Gap sets for the spectra of cubic graphs

Alicia J. Koll'ar, P. Sarnak
{"title":"Gap sets for the spectra of cubic graphs","authors":"Alicia J. Koll'ar, P. Sarnak","doi":"10.1090/cams/3","DOIUrl":null,"url":null,"abstract":"<p>We study gaps in the spectra of the adjacency matrices of large finite cubic graphs. It is known that the gap intervals <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis 2 StartRoot 2 EndRoot comma 3 right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>2</mml:mn>\n <mml:msqrt>\n <mml:mn>2</mml:mn>\n </mml:msqrt>\n <mml:mo>,</mml:mo>\n <mml:mn>3</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(2 \\sqrt {2},3)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-bracket negative 3 comma negative 2 right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>3</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>2</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">[-3,-2)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> achieved in cubic Ramanujan graphs and line graphs are maximal. We give constraints on spectra in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-bracket negative 3 comma 3 right-bracket\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>3</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>3</mml:mn>\n <mml:mo stretchy=\"false\">]</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">[-3,3]</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> which are maximally gapped and construct examples which achieve these bounds. These graphs yield new instances of maximally gapped intervals. We also show that every point in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-bracket negative 3 comma 3 right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>3</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>3</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">[-3,3)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> can be gapped by planar cubic graphs. Our results show that the study of spectra of cubic, and even planar cubic, graphs is subtle and very rich.</p>","PeriodicalId":285678,"journal":{"name":"Communications of the American Mathematical Society","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/cams/3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

We study gaps in the spectra of the adjacency matrices of large finite cubic graphs. It is known that the gap intervals ( 2 2 , 3 ) (2 \sqrt {2},3) and [ 3 , 2 ) [-3,-2) achieved in cubic Ramanujan graphs and line graphs are maximal. We give constraints on spectra in [ 3 , 3 ] [-3,3] which are maximally gapped and construct examples which achieve these bounds. These graphs yield new instances of maximally gapped intervals. We also show that every point in [ 3 , 3 ) [-3,3) can be gapped by planar cubic graphs. Our results show that the study of spectra of cubic, and even planar cubic, graphs is subtle and very rich.

三次图谱的间隙集
研究了大有限三次图邻接矩阵谱中的间隙。已知在三次拉马努金图和线形图中得到的间隙区间(2,2,3)(2 \sqrt{2},3)和[-3,-2)[-3,-2)是极大的。我们给出了在[−3,3][-3,3]区间的谱的最大间隙约束,并构造了达到这些边界的例子。这些图产生了最大间隔的新实例。我们还证明了[−3,3)[-3,3)]中的每一个点都可以被平面三次图隔开。我们的研究结果表明,三次光谱,甚至是平面三次光谱图的研究是微妙而丰富的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信