{"title":"Gap sets for the spectra of cubic graphs","authors":"Alicia J. Koll'ar, P. Sarnak","doi":"10.1090/cams/3","DOIUrl":null,"url":null,"abstract":"<p>We study gaps in the spectra of the adjacency matrices of large finite cubic graphs. It is known that the gap intervals <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis 2 StartRoot 2 EndRoot comma 3 right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>2</mml:mn>\n <mml:msqrt>\n <mml:mn>2</mml:mn>\n </mml:msqrt>\n <mml:mo>,</mml:mo>\n <mml:mn>3</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(2 \\sqrt {2},3)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-bracket negative 3 comma negative 2 right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>3</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>2</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">[-3,-2)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> achieved in cubic Ramanujan graphs and line graphs are maximal. We give constraints on spectra in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-bracket negative 3 comma 3 right-bracket\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>3</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>3</mml:mn>\n <mml:mo stretchy=\"false\">]</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">[-3,3]</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> which are maximally gapped and construct examples which achieve these bounds. These graphs yield new instances of maximally gapped intervals. We also show that every point in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-bracket negative 3 comma 3 right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>3</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>3</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">[-3,3)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> can be gapped by planar cubic graphs. Our results show that the study of spectra of cubic, and even planar cubic, graphs is subtle and very rich.</p>","PeriodicalId":285678,"journal":{"name":"Communications of the American Mathematical Society","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/cams/3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
We study gaps in the spectra of the adjacency matrices of large finite cubic graphs. It is known that the gap intervals (22,3)(2 \sqrt {2},3) and [−3,−2)[-3,-2) achieved in cubic Ramanujan graphs and line graphs are maximal. We give constraints on spectra in [−3,3][-3,3] which are maximally gapped and construct examples which achieve these bounds. These graphs yield new instances of maximally gapped intervals. We also show that every point in [−3,3)[-3,3) can be gapped by planar cubic graphs. Our results show that the study of spectra of cubic, and even planar cubic, graphs is subtle and very rich.