Mining Gene Expression Profiles with Biological Prior Knowledge

Seungchan Kim, Younghee Tak, L. Tari
{"title":"Mining Gene Expression Profiles with Biological Prior Knowledge","authors":"Seungchan Kim, Younghee Tak, L. Tari","doi":"10.1109/LSSA.2006.250396","DOIUrl":null,"url":null,"abstract":"One of the important goals in the post-genomic era is to identify the functions of genes, either individually or as group. Recently, there has been an increasing use of the gene ontology (GO) to analyze a list of genes identified via various statistical and/or computational methods. The main assumption behind using GO for interpreting microarray data is that the genes that belong to similar molecular functions or biological processes would display similarly tightly regulated expression patterns. Current methods utilize GO after the statistical analysis of gene expression data. In this paper, we describe a method that utilizes both gene expression values and biological knowledge simultaneously to identify the significant biological functions. The method is different from other methods in that it incorporates GO as prior knowledge into the mining of gene expression data. The method has been applied to the gene expression profiles to cell cycle experiments","PeriodicalId":360097,"journal":{"name":"2006 IEEE/NLM Life Science Systems and Applications Workshop","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE/NLM Life Science Systems and Applications Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LSSA.2006.250396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

One of the important goals in the post-genomic era is to identify the functions of genes, either individually or as group. Recently, there has been an increasing use of the gene ontology (GO) to analyze a list of genes identified via various statistical and/or computational methods. The main assumption behind using GO for interpreting microarray data is that the genes that belong to similar molecular functions or biological processes would display similarly tightly regulated expression patterns. Current methods utilize GO after the statistical analysis of gene expression data. In this paper, we describe a method that utilizes both gene expression values and biological knowledge simultaneously to identify the significant biological functions. The method is different from other methods in that it incorporates GO as prior knowledge into the mining of gene expression data. The method has been applied to the gene expression profiles to cell cycle experiments
利用生物学先验知识挖掘基因表达谱
后基因组时代的重要目标之一是确定基因的功能,无论是个体的还是群体的。最近,越来越多的人使用基因本体(GO)来分析通过各种统计和/或计算方法识别的基因列表。使用氧化石墨烯解释微阵列数据背后的主要假设是,属于类似分子功能或生物过程的基因将显示类似的严格调控的表达模式。目前的方法是在对基因表达数据进行统计分析后使用氧化石墨烯。在本文中,我们描述了一种同时利用基因表达值和生物学知识来识别重要生物学功能的方法。该方法与其他方法的不同之处在于,它将GO作为先验知识纳入基因表达数据的挖掘中。该方法已应用于细胞周期实验的基因表达谱分析
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信