S. Chaeibakhsh, Roya Sabbagh Novin, Tucker Hermans, A. Merryweather, A. Kuntz
{"title":"Optimizing Hospital Room Layout to Reduce the Risk of Patient Falls","authors":"S. Chaeibakhsh, Roya Sabbagh Novin, Tucker Hermans, A. Merryweather, A. Kuntz","doi":"10.5220/0010226300360048","DOIUrl":null,"url":null,"abstract":"Despite years of research into patient falls in hospital rooms, falls and related injuries remain a serious concern to patient safety. In this work, we formulate a gradient-free constrained optimization problem to generate and reconfigure the hospital room interior layout to minimize the risk of falls. We define a cost function built on a hospital room fall model that takes into account the supportive or hazardous effect of the patient's surrounding objects, as well as simulated patient trajectories inside the room. We define a constraint set that ensures the functionality of the generated room layouts in addition to conforming to architectural guidelines. We solve this problem efficiently using a variant of simulated annealing. We present results for two real-world hospital room types and demonstrate a significant improvement of 18% on average in patient fall risk when compared with a traditional hospital room layout and 41% when compared with randomly generated layouts.","PeriodicalId":235376,"journal":{"name":"International Conference on Operations Research and Enterprise Systems","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Operations Research and Enterprise Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0010226300360048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Despite years of research into patient falls in hospital rooms, falls and related injuries remain a serious concern to patient safety. In this work, we formulate a gradient-free constrained optimization problem to generate and reconfigure the hospital room interior layout to minimize the risk of falls. We define a cost function built on a hospital room fall model that takes into account the supportive or hazardous effect of the patient's surrounding objects, as well as simulated patient trajectories inside the room. We define a constraint set that ensures the functionality of the generated room layouts in addition to conforming to architectural guidelines. We solve this problem efficiently using a variant of simulated annealing. We present results for two real-world hospital room types and demonstrate a significant improvement of 18% on average in patient fall risk when compared with a traditional hospital room layout and 41% when compared with randomly generated layouts.