Evidence theory for image segmentation using information from stochastic Watershed and Hessian filtering

Chaza Chahine, R. El-Berbari, Corinne Lagorre, A. Nakib, É. Petit
{"title":"Evidence theory for image segmentation using information from stochastic Watershed and Hessian filtering","authors":"Chaza Chahine, R. El-Berbari, Corinne Lagorre, A. Nakib, É. Petit","doi":"10.1109/IWSSIP.2015.7314197","DOIUrl":null,"url":null,"abstract":"In this paper; a new segmentation method is presented. It combines the probability density function of the stochastic Watershed and the Frobenius norm of the Hessian operator under the evidence theory framework. The first step of this method is a classification of the values provided by these two sources of information into five classes. Then, a predefined belief scheme is used to assign masses to pixels in each class. The segmentation result is obtained after beliefs fusion using the Dempster's rule of combination. The method is designed for two-label segmentation, contour and non-contour. Experimental results on a set of images from the Berkeley dataset, shows the ability of this method to yield a good segmentation compared to the given ground truths.","PeriodicalId":249021,"journal":{"name":"2015 International Conference on Systems, Signals and Image Processing (IWSSIP)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Systems, Signals and Image Processing (IWSSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWSSIP.2015.7314197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper; a new segmentation method is presented. It combines the probability density function of the stochastic Watershed and the Frobenius norm of the Hessian operator under the evidence theory framework. The first step of this method is a classification of the values provided by these two sources of information into five classes. Then, a predefined belief scheme is used to assign masses to pixels in each class. The segmentation result is obtained after beliefs fusion using the Dempster's rule of combination. The method is designed for two-label segmentation, contour and non-contour. Experimental results on a set of images from the Berkeley dataset, shows the ability of this method to yield a good segmentation compared to the given ground truths.
基于随机分水岭和黑森滤波信息的图像分割证据理论
在本文中;提出了一种新的分割方法。在证据理论框架下,将随机分水岭的概率密度函数与Hessian算子的Frobenius范数相结合。该方法的第一步是将这两个信息源提供的值分为五类。然后,使用预定义的信念方案为每个类中的像素分配质量。采用Dempster组合规则进行信念融合后得到分割结果。该方法适用于轮廓和非轮廓的双标签分割。在伯克利数据集的一组图像上的实验结果表明,与给定的ground truth相比,该方法能够产生良好的分割。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信