{"title":"A recommendation algorithm using positive and negative latent models","authors":"A. Takasu, Saranya Maneeroj","doi":"10.1109/CIDM.2011.5949455","DOIUrl":null,"url":null,"abstract":"This paper proposes an algorithm for recommender systems that uses both positive and negative latent user models. In recommending items to a user, recommender systems usually exploit item content information as well as the preferences of similar users. Various types of content information can be attached to items and these are useful for judging user preferences. For example, in movie recommendations, a movie record may include the director, the actors, and reviews. These types of information help systems calculate sophisticated user preferences. We first propose a probabilistic model that maps multi-attributed records into a low-dimensional feature space. The proposed model extends latent Dirichlet allocation to the handling of multi-attributed data. We derive an algorithm for estimating the model's parameters using the Gibbs sampling technique. Next, we propose a probabilistic model to calculate user preferences for items in the feature space. Finally, we develop a recommendation algorithm based on the probabilistic model that works efficiently for large quantities of items and user ratings. We use a publicly available movie corpus to evaluate the proposed algorithm empirically, in terms of both its recommendation accuracy and its processing efficiency.","PeriodicalId":211565,"journal":{"name":"2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIDM.2011.5949455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This paper proposes an algorithm for recommender systems that uses both positive and negative latent user models. In recommending items to a user, recommender systems usually exploit item content information as well as the preferences of similar users. Various types of content information can be attached to items and these are useful for judging user preferences. For example, in movie recommendations, a movie record may include the director, the actors, and reviews. These types of information help systems calculate sophisticated user preferences. We first propose a probabilistic model that maps multi-attributed records into a low-dimensional feature space. The proposed model extends latent Dirichlet allocation to the handling of multi-attributed data. We derive an algorithm for estimating the model's parameters using the Gibbs sampling technique. Next, we propose a probabilistic model to calculate user preferences for items in the feature space. Finally, we develop a recommendation algorithm based on the probabilistic model that works efficiently for large quantities of items and user ratings. We use a publicly available movie corpus to evaluate the proposed algorithm empirically, in terms of both its recommendation accuracy and its processing efficiency.