Numerical Solution of Time Fractional Delay Partial Differential Equations by Perturbation Iteration Algorithm

F. Khan, M. Sultana, M. Khalid
{"title":"Numerical Solution of Time Fractional Delay Partial Differential Equations\nby Perturbation Iteration Algorithm","authors":"F. Khan, M. Sultana, M. Khalid","doi":"10.52280/pujm.2021.530803","DOIUrl":null,"url":null,"abstract":"The aim of this research was to relate two physical effects for\npartial differential equations on the time-coordinate, notably the multipledelay\ntimes and fractional-derivative. Time Fractional Delay Partial Differential\nEquations (TFDPDEs) usually interpret some complex physical\nphenomenon. This study works to solve TFDPDE with shrinking in x and\nproportional delays in t numerically by utilizing the fractional derivative\nof Caputo sense in the numerical method known as Perturbation Iteration\nAlgorithm (PIA). A few famous numerical examples have been solved\nusing PIA and their comparison with an exact solutions is illustrated for\n® = 1. Also, different values of ® have been depicted in graphical form to\nshow their fractional behavior. The delay term k is also discussed extensively\nin this TFDPDE study. Numerical results show that this technique is\nreliable, convenient, and attractive for computational use in modern times.","PeriodicalId":205373,"journal":{"name":"Punjab University Journal of Mathematics","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Punjab University Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52280/pujm.2021.530803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The aim of this research was to relate two physical effects for partial differential equations on the time-coordinate, notably the multipledelay times and fractional-derivative. Time Fractional Delay Partial Differential Equations (TFDPDEs) usually interpret some complex physical phenomenon. This study works to solve TFDPDE with shrinking in x and proportional delays in t numerically by utilizing the fractional derivative of Caputo sense in the numerical method known as Perturbation Iteration Algorithm (PIA). A few famous numerical examples have been solved using PIA and their comparison with an exact solutions is illustrated for ® = 1. Also, different values of ® have been depicted in graphical form to show their fractional behavior. The delay term k is also discussed extensively in this TFDPDE study. Numerical results show that this technique is reliable, convenient, and attractive for computational use in modern times.
时间分数阶延迟偏微分方程的微扰迭代算法数值解
本研究的目的是将偏微分方程在时间坐标上的两种物理效应联系起来,特别是多重延迟时间和分数阶导数。时间分数阶延迟偏微分方程(TFDPDEs)通常用来解释一些复杂的物理现象。本文利用微扰迭代算法(PIA)中的Caputo意义的分数阶导数,对具有x收缩和t比例延迟的TFDPDE进行了数值求解。用PIA求解了几个著名的数值例子,并与精确解进行了比较。此外,用图形形式描述了®的不同值,以显示它们的分数行为。延迟项k在本TFDPDE研究中也得到了广泛的讨论。数值结果表明,该方法可靠、方便,对现代计算应用具有吸引力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信