Student Performance Prediction by LMS Data and Classroom Videos

Wentong Liu, Wei Xu, Xiaoqing Zhan, Wei Liu, W. Cheng
{"title":"Student Performance Prediction by LMS Data and Classroom Videos","authors":"Wentong Liu, Wei Xu, Xiaoqing Zhan, Wei Liu, W. Cheng","doi":"10.1109/ICCSE49874.2020.9201684","DOIUrl":null,"url":null,"abstract":"This paper conducts research on predicting academic performance based on the learning management system (LMS) data and classroom videos. Except for the interactive data of the LMS, our research introduces classroom videos to expand learning behavioral variables. Through the correlation analysis with the final exam scores, we select 6 of these variables as predictors. Then, the prediction results of different predictor combinations are compared and the result shows that the prediction based on LMS predictors and video predictors achieves the best accuracy of 89.7%, which is higher than the accuracy of using LMS predictors or video predictors individually. The predictors obtained through computer processing can be used for automatic performance prediction.","PeriodicalId":350703,"journal":{"name":"2020 15th International Conference on Computer Science & Education (ICCSE)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 15th International Conference on Computer Science & Education (ICCSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSE49874.2020.9201684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper conducts research on predicting academic performance based on the learning management system (LMS) data and classroom videos. Except for the interactive data of the LMS, our research introduces classroom videos to expand learning behavioral variables. Through the correlation analysis with the final exam scores, we select 6 of these variables as predictors. Then, the prediction results of different predictor combinations are compared and the result shows that the prediction based on LMS predictors and video predictors achieves the best accuracy of 89.7%, which is higher than the accuracy of using LMS predictors or video predictors individually. The predictors obtained through computer processing can be used for automatic performance prediction.
基于LMS数据和课堂视频的学生成绩预测
本文基于学习管理系统(LMS)数据和课堂视频对学习成绩预测进行了研究。除了LMS的交互数据外,我们的研究还引入了课堂视频来扩展学习行为变量。通过与期末考试成绩的相关性分析,我们从中选择了6个变量作为预测因子。然后,对不同预测器组合的预测结果进行比较,结果表明,基于LMS预测器和视频预测器的预测准确率最高,达到89.7%,高于单独使用LMS预测器或视频预测器的预测准确率。通过计算机处理得到的预测量可用于自动性能预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信