{"title":"Probabilistic Contracts: A Compositional Reasoning Methodology for the Design of Stochastic Systems","authors":"Benoît Delahaye, B. Caillaud, Axel Legay","doi":"10.1109/ACSD.2010.13","DOIUrl":null,"url":null,"abstract":"A contract allows to distinguish hypotheses made on a system (the guarantees) from those made on its environment (the assumptions). In this paper, we focus on models of Assume/Guarantee contracts for (stochastic) systems. We consider contracts capable of capturing reliability and availability properties of such systems. We also show that classical notions of Satisfaction and Refinement can be checked by effective methods thanks to a reduction to classical verification problems. Finally, theorems supporting compositional reasoning and enabling the scalable analysis of complex systems are also studied.","PeriodicalId":169191,"journal":{"name":"2010 10th International Conference on Application of Concurrency to System Design","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 10th International Conference on Application of Concurrency to System Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSD.2010.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33
Abstract
A contract allows to distinguish hypotheses made on a system (the guarantees) from those made on its environment (the assumptions). In this paper, we focus on models of Assume/Guarantee contracts for (stochastic) systems. We consider contracts capable of capturing reliability and availability properties of such systems. We also show that classical notions of Satisfaction and Refinement can be checked by effective methods thanks to a reduction to classical verification problems. Finally, theorems supporting compositional reasoning and enabling the scalable analysis of complex systems are also studied.