Learning spectral graph mapping for classification

Xiao-hua Xu, Ping He, Ling Chen
{"title":"Learning spectral graph mapping for classification","authors":"Xiao-hua Xu, Ping He, Ling Chen","doi":"10.1109/ICMLC.2010.5580573","DOIUrl":null,"url":null,"abstract":"Nonlinear multi-classification has been a popular task in machine learning recently. In this paper, we propose a nonlinear multi-classification algorithm named Supervised Spectral Space Classifier (S3C), S3C integrates the discriminative information into the spectral graph mapping and transforms the input data into the low-dimensional supervised spectral space. S3C not only enables researchers to examine the mapped data in its supervised spectral space, but also can be directly applied to multi-classification problems. Experimental results on synthetic and real-world datasets demonstrate that S3C outperforms the state-of-the-art nonlinear classifiers SVM.","PeriodicalId":126080,"journal":{"name":"2010 International Conference on Machine Learning and Cybernetics","volume":"12 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2010.5580573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nonlinear multi-classification has been a popular task in machine learning recently. In this paper, we propose a nonlinear multi-classification algorithm named Supervised Spectral Space Classifier (S3C), S3C integrates the discriminative information into the spectral graph mapping and transforms the input data into the low-dimensional supervised spectral space. S3C not only enables researchers to examine the mapped data in its supervised spectral space, but also can be directly applied to multi-classification problems. Experimental results on synthetic and real-world datasets demonstrate that S3C outperforms the state-of-the-art nonlinear classifiers SVM.
学习谱图映射用于分类
非线性多分类是近年来机器学习领域的一个热门课题。本文提出了一种非线性多分类算法——监督谱空间分类器(S3C), S3C将判别信息整合到谱图映射中,并将输入数据转换到低维监督谱空间中。S3C不仅使研究人员能够在其监督光谱空间中检查映射数据,而且可以直接应用于多分类问题。在合成数据集和实际数据集上的实验结果表明,S3C优于最先进的非线性分类器SVM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信