The finite-sample risk of the k-nearest-neighbor classifier under the L/sub p/ metric

R. Snapp, S. S. Venkatesh
{"title":"The finite-sample risk of the k-nearest-neighbor classifier under the L/sub p/ metric","authors":"R. Snapp, S. S. Venkatesh","doi":"10.1109/WITS.1994.513925","DOIUrl":null,"url":null,"abstract":"The finite-sample risk of the k-nearest neighbor classifier that uses an L/sub 2/ distance function is examined. For a family of classification problems with smooth distributions in R/sup n/, the risk can be represented as an asymptotic expansion in inverse powers of the n-th root of the reference-sample size. The leading coefficients of this expansion suggest that the Euclidean or L/sub 2/ distance function minimizes the risk for sufficiently large reference samples.","PeriodicalId":423518,"journal":{"name":"Proceedings of 1994 Workshop on Information Theory and Statistics","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 Workshop on Information Theory and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WITS.1994.513925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The finite-sample risk of the k-nearest neighbor classifier that uses an L/sub 2/ distance function is examined. For a family of classification problems with smooth distributions in R/sup n/, the risk can be represented as an asymptotic expansion in inverse powers of the n-th root of the reference-sample size. The leading coefficients of this expansion suggest that the Euclidean or L/sub 2/ distance function minimizes the risk for sufficiently large reference samples.
在L/sub p/度量下k-近邻分类器的有限样本风险
研究了使用L/sub 2/距离函数的k近邻分类器的有限样本风险。对于一类光滑分布在R/sup n/中的分类问题,其风险可以表示为参考样本量n次方根的反幂的渐近展开式。该展开式的主要系数表明,对于足够大的参考样本,欧几里得或L/sub 2/距离函数将风险最小化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信