A practical method of state estimation in ship power system

Yong Shan, Qingwu Gong, Yang Yin
{"title":"A practical method of state estimation in ship power system","authors":"Yong Shan, Qingwu Gong, Yang Yin","doi":"10.1109/APAP.2011.6180485","DOIUrl":null,"url":null,"abstract":"Reactive power and voltage control is the important technical means to improve the voltage quality and reduce the active loss of power grid. It is hard to regulate the voltage and reactive power of Guizhou power grid by manual operation. In this paper, adopting to the successful experiences in automatic voltage control (AVC) system of several power companies in Europe and China, a new decomposition and coordination method is presented for multivariable coordinated control between generators, shunt capacitors, shunt reactors and adjustable reactive loads. Firstly, the method utilizes the primal-dual interior point algorithm to solve an large-scale discrete and mixing optimal reactive power flow (ROPF) calculation, which gives an optimal voltage profile of the whole power grid; Then the method utilizes the extended coordinated secondary voltage control to optimize the regional reactive power distribution with discrete and mixing variables coordination based on the local balance of reactive power, whilst satisfying the optimal voltage profile. The substation of district power network is equivalent to the adjustable reactive loads with coordination between provincial and district AVC systems. The paper also presents a new method of main and auxiliary dual instructions, which is used to control the plant voltage by master station. The newly developed AVC system has been put into practical operation in Guizhou power grid, and the results show that the AVC system is remarkably effective.","PeriodicalId":435652,"journal":{"name":"2011 International Conference on Advanced Power System Automation and Protection","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Advanced Power System Automation and Protection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APAP.2011.6180485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Reactive power and voltage control is the important technical means to improve the voltage quality and reduce the active loss of power grid. It is hard to regulate the voltage and reactive power of Guizhou power grid by manual operation. In this paper, adopting to the successful experiences in automatic voltage control (AVC) system of several power companies in Europe and China, a new decomposition and coordination method is presented for multivariable coordinated control between generators, shunt capacitors, shunt reactors and adjustable reactive loads. Firstly, the method utilizes the primal-dual interior point algorithm to solve an large-scale discrete and mixing optimal reactive power flow (ROPF) calculation, which gives an optimal voltage profile of the whole power grid; Then the method utilizes the extended coordinated secondary voltage control to optimize the regional reactive power distribution with discrete and mixing variables coordination based on the local balance of reactive power, whilst satisfying the optimal voltage profile. The substation of district power network is equivalent to the adjustable reactive loads with coordination between provincial and district AVC systems. The paper also presents a new method of main and auxiliary dual instructions, which is used to control the plant voltage by master station. The newly developed AVC system has been put into practical operation in Guizhou power grid, and the results show that the AVC system is remarkably effective.
一种实用的船舶电力系统状态估计方法
无功电压控制是提高电网电压质量、降低电网有功损耗的重要技术手段。贵州电网的电压和无功难以通过人工操作进行调节。本文借鉴欧美几家电力公司电压自动控制(AVC)系统的成功经验,提出了一种新的发电机、并联电容器、并联电抗器和可调无功负荷之间多变量协调控制的分解协调方法。该方法首先利用原对偶内点算法求解大规模离散混合最优无功潮流(ROPF)计算,得到整个电网的最优电压分布图;在满足最优电压分布的前提下,基于局部无功平衡,利用扩展的二次电压协调控制,采用离散变量和混合变量协调对区域无功分配进行优化。区网变电站相当于省、区AVC系统协调的可调无功负荷。本文还提出了一种主辅双指令的新方法,通过主站控制电站电压。新开发的AVC系统已在贵州电网投入实际运行,结果表明,AVC系统具有显著的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信