Fast principal component analysis and data whitening algorithms

Messaoud Thameri, A. Kammoun, K. Abed-Meraim, A. Belouchrani
{"title":"Fast principal component analysis and data whitening algorithms","authors":"Messaoud Thameri, A. Kammoun, K. Abed-Meraim, A. Belouchrani","doi":"10.1109/WOSSPA.2011.5931434","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an adaptive implementation of a fast-convergent algorithm for principal component extraction. Our approach consists of first estimating a basis of the principal subspace through the use of OPAST algorithm. The obtained basis is then fed to a second process where at each iteration one or several Givens transformations are applied to estimate the principal components. Later on, the proposed PCA algorithm is used to derive a fast data whitening solution that overcomes the existing ones of similar complexity order. Simulation results support the high performance of our algorithms in terms of accuracy and speed of convergence.","PeriodicalId":343415,"journal":{"name":"International Workshop on Systems, Signal Processing and their Applications, WOSSPA","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Systems, Signal Processing and their Applications, WOSSPA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WOSSPA.2011.5931434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this paper, we propose an adaptive implementation of a fast-convergent algorithm for principal component extraction. Our approach consists of first estimating a basis of the principal subspace through the use of OPAST algorithm. The obtained basis is then fed to a second process where at each iteration one or several Givens transformations are applied to estimate the principal components. Later on, the proposed PCA algorithm is used to derive a fast data whitening solution that overcomes the existing ones of similar complexity order. Simulation results support the high performance of our algorithms in terms of accuracy and speed of convergence.
快速主成分分析和数据白化算法
本文提出了一种快速收敛主成分提取算法的自适应实现。我们的方法包括首先通过使用OPAST算法估计主子空间的基。然后将获得的基输入到第二个过程中,在每个迭代中应用一个或几个Givens变换来估计主成分。然后,利用所提出的PCA算法推导出一种快速的数据白化方案,该方案克服了现有的相似复杂度顺序的数据白化方案。仿真结果支持我们的算法在精度和收敛速度方面的高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信