Change detection using synthetic hyperspectral imagery

Karmon Vongsy, M. Mendenhall, Philip M. Hanna, Jason R. Kaufman
{"title":"Change detection using synthetic hyperspectral imagery","authors":"Karmon Vongsy, M. Mendenhall, Philip M. Hanna, Jason R. Kaufman","doi":"10.1109/WHISPERS.2009.5289016","DOIUrl":null,"url":null,"abstract":"In the best of circumstances, change detection (CD) is accomplished using measurements from the same instrument and under similar collection circumstances. Complications in the CD process arise when the variability in the collection process is not minimized. Variations between collected images and a lack of precise corresponding ground truth make accurate evaluation of a given CD method imprecise at best. This work leverages synthetic hyperspectral imagery, with known ground truth to include primary and tertiary materials, to investigate the use of common CD algorithms for the hyperspectral CD problem. Specifically, we use synthetic hyperspectral images with different spatial resolutions acquired at different altitudes, thus exhibiting different atmospheric affects. The importance of this work is in definition of a CD taxonomy and using that taxonomy for the accurate evaluation of several CD methods. Results are presented using receiver operating characteristic (ROC) curves and the area under the ROC curve, indicating that, under mildly varying imaging conditions, principal component analysis-based CD outperforms simple image differencing and correlation coefficient-based CD methods.","PeriodicalId":242447,"journal":{"name":"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2009.5289016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In the best of circumstances, change detection (CD) is accomplished using measurements from the same instrument and under similar collection circumstances. Complications in the CD process arise when the variability in the collection process is not minimized. Variations between collected images and a lack of precise corresponding ground truth make accurate evaluation of a given CD method imprecise at best. This work leverages synthetic hyperspectral imagery, with known ground truth to include primary and tertiary materials, to investigate the use of common CD algorithms for the hyperspectral CD problem. Specifically, we use synthetic hyperspectral images with different spatial resolutions acquired at different altitudes, thus exhibiting different atmospheric affects. The importance of this work is in definition of a CD taxonomy and using that taxonomy for the accurate evaluation of several CD methods. Results are presented using receiver operating characteristic (ROC) curves and the area under the ROC curve, indicating that, under mildly varying imaging conditions, principal component analysis-based CD outperforms simple image differencing and correlation coefficient-based CD methods.
利用合成高光谱图像进行变化检测
在最好的情况下,变更检测(CD)是在相同的仪器和类似的收集环境下使用测量完成的。当收集过程中的可变性没有最小化时,CD过程中的复杂性就会出现。所收集的图像之间的差异以及缺乏精确的相应的地面真值,使得对给定CD方法的准确评估充其量是不精确的。这项工作利用合成的高光谱图像,已知的地面真相,包括初级和三级材料,来研究高光谱CD问题的通用CD算法的使用。具体来说,我们使用了在不同高度获得的不同空间分辨率的合成高光谱图像,从而显示出不同的大气影响。这项工作的重要性在于定义CD分类,并使用该分类对几种CD方法进行准确评估。使用受试者工作特征(ROC)曲线和ROC曲线下面积的结果表明,在轻度变化的成像条件下,基于主成分分析的CD优于简单的图像差分和基于相关系数的CD方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信