Blind Separation of Convolutive Mixtures using Nonstationarity and Fractional Lower Order Statistics (FLOS): Application to Audio Signals

Mohamed Sahmoudi, H. Boumaraf, M. Amin, D. Pham
{"title":"Blind Separation of Convolutive Mixtures using Nonstationarity and Fractional Lower Order Statistics (FLOS): Application to Audio Signals","authors":"Mohamed Sahmoudi, H. Boumaraf, M. Amin, D. Pham","doi":"10.1109/SAM.2006.1706101","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce new time-varying fractional spectral matrices to exploit both the nonstationarity and heavy-tailed sources properties for blind separation of convolutive audio mixtures. We define these spectrum matrices, that are different for various delays, using fractional lower order statistics (FLOS) of data. Similar to the second order statistics (SOS) based approaches, we maximize the sources independence by jointly diagonalizing these fractional matrices spectrum of the reconstructed signals using a mutual information criterion. A set of experiments using audio signals and real impulse response of acoustic room are designed to verify the usefulness of the proposed method","PeriodicalId":272327,"journal":{"name":"Fourth IEEE Workshop on Sensor Array and Multichannel Processing, 2006.","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth IEEE Workshop on Sensor Array and Multichannel Processing, 2006.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2006.1706101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

In this paper, we introduce new time-varying fractional spectral matrices to exploit both the nonstationarity and heavy-tailed sources properties for blind separation of convolutive audio mixtures. We define these spectrum matrices, that are different for various delays, using fractional lower order statistics (FLOS) of data. Similar to the second order statistics (SOS) based approaches, we maximize the sources independence by jointly diagonalizing these fractional matrices spectrum of the reconstructed signals using a mutual information criterion. A set of experiments using audio signals and real impulse response of acoustic room are designed to verify the usefulness of the proposed method
基于非平稳和分数阶统计量的卷积混合盲分离:在音频信号中的应用
本文引入新的时变分数阶谱矩阵,利用其非平稳性和重尾源的特性对卷积混合音频进行盲分离。我们使用数据的分数阶低阶统计量(FLOS)来定义这些不同延迟的频谱矩阵。与基于二阶统计量(SOS)的方法类似,我们利用互信息准则联合对角化这些重构信号的分数矩阵谱,从而最大限度地提高了源独立性。设计了一组音频信号和声室真实脉冲响应实验,验证了所提方法的有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信