{"title":"A High-Order Finite Volume Method for 3D Elastic Modelling on Unstructured Meshes","authors":"Wensheng Zhang","doi":"10.5772/INTECHOPEN.86400","DOIUrl":null,"url":null,"abstract":"In this chapter, a new efficient high-order finite volume method for 3D elastic modelling on unstructured meshes is developed. The stencil for the high-order polynomial reconstruction is generated by subdividing the relative coarse tetrahedrons. The reconstruction on the stencil is performed by using cell-averaged quantities represented by the hierarchical orthonormal basis functions. Unlike the traditional high-order finite volume method, the new method has a very local property like the discontinuous Galerkin method. Furthermore, it can be written as an inner-split computational scheme which is beneficial to reducing computational amount. The reconstruction matrix is invertible and remains unchanged for all tetrahedrons, and thus it can be pre-computed and stored before time evolution. These special advantages facilitate the parallelization and high-order computations. The high-order accuracy in time is obtained by the Runge-Kutta method. Numerical computations including a 3D real model with complex topography demonstrate the effectiveness and good adaptability to complex topography.","PeriodicalId":301313,"journal":{"name":"Seismic Waves - Probing Earth System","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seismic Waves - Probing Earth System","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.86400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this chapter, a new efficient high-order finite volume method for 3D elastic modelling on unstructured meshes is developed. The stencil for the high-order polynomial reconstruction is generated by subdividing the relative coarse tetrahedrons. The reconstruction on the stencil is performed by using cell-averaged quantities represented by the hierarchical orthonormal basis functions. Unlike the traditional high-order finite volume method, the new method has a very local property like the discontinuous Galerkin method. Furthermore, it can be written as an inner-split computational scheme which is beneficial to reducing computational amount. The reconstruction matrix is invertible and remains unchanged for all tetrahedrons, and thus it can be pre-computed and stored before time evolution. These special advantages facilitate the parallelization and high-order computations. The high-order accuracy in time is obtained by the Runge-Kutta method. Numerical computations including a 3D real model with complex topography demonstrate the effectiveness and good adaptability to complex topography.