S. Saha, A. Dutta, C. DeVault, V. Shalaev, A. Boltasseva
{"title":"Ultrafast all-optical switching in a continuous layer gap plasmon metasurface (Conference Presentation)","authors":"S. Saha, A. Dutta, C. DeVault, V. Shalaev, A. Boltasseva","doi":"10.1117/12.2320585","DOIUrl":null,"url":null,"abstract":"All-optical nanophotonic switches, not bound by the inherent RC delays of electronic circuits, have the potential to push data-processing speeds beyond the limits of Moore’s Law. This has lead to the investigation of light-matter interactions in nanostructured materials in several all-optical data processing applications. To have a true impact on the field of ultrafast data-transfer, it is important to demonstrate switching in the telecom frequency range.\nWe have designed a continuous layer gap plasmon metasurface, comprising a layer of gold nanodisk resonators on a 20 nm film of ZnO deposited on an optically thick gold layer. The performance of the metasurface has been investigated through numerical studies, using the optical properties of as-grown gold and zinc oxide, characterized by ellipsometry. An on-off ratio of 10.6 dB has been observed in simulations. Experimental studies are underway. The findings of this research work will pave the pathway to the design of ultra-compact and ultrafast optical switches employing ultrafast, dynamically tunable metasurfaces.","PeriodicalId":346327,"journal":{"name":"Active Photonic Platforms X","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Active Photonic Platforms X","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2320585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
All-optical nanophotonic switches, not bound by the inherent RC delays of electronic circuits, have the potential to push data-processing speeds beyond the limits of Moore’s Law. This has lead to the investigation of light-matter interactions in nanostructured materials in several all-optical data processing applications. To have a true impact on the field of ultrafast data-transfer, it is important to demonstrate switching in the telecom frequency range.
We have designed a continuous layer gap plasmon metasurface, comprising a layer of gold nanodisk resonators on a 20 nm film of ZnO deposited on an optically thick gold layer. The performance of the metasurface has been investigated through numerical studies, using the optical properties of as-grown gold and zinc oxide, characterized by ellipsometry. An on-off ratio of 10.6 dB has been observed in simulations. Experimental studies are underway. The findings of this research work will pave the pathway to the design of ultra-compact and ultrafast optical switches employing ultrafast, dynamically tunable metasurfaces.