{"title":"FFDR: Design and implementation framework for face detection based on raspberry pi","authors":"Dhafer Alhajim, G. Akbarizadeh, K. Ansari-Asl","doi":"10.1109/MVIP53647.2022.9738788","DOIUrl":null,"url":null,"abstract":"In today’s world, we are surrounded by data of many types, but the abundance of image and video data available offers the data set needed for face recognition technology to function. Face recognition is a critical component of security and surveillance systems that analyze visual data and millions of pictures. In this article, we investigated the possibility of combining standard face detection and identification techniques such as machine learning and deep learning with Raspberry Pi face detection since the Raspberry Pi makes the system cost-effective, easy to use, and improves performance. Furthermore, some images of a selected individual were shot with a camera and a python program in order to do face recognition. This paper proposes a facial recognition system that can detect faces from direct and indirect images. We call this system FFDR, which is characterized by high speed and accuracy in the diagnosis of faces because it uses the Raspberry Pi 4 and the latest libraries and advanced environments in the Python language.","PeriodicalId":184716,"journal":{"name":"2022 International Conference on Machine Vision and Image Processing (MVIP)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Machine Vision and Image Processing (MVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MVIP53647.2022.9738788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In today’s world, we are surrounded by data of many types, but the abundance of image and video data available offers the data set needed for face recognition technology to function. Face recognition is a critical component of security and surveillance systems that analyze visual data and millions of pictures. In this article, we investigated the possibility of combining standard face detection and identification techniques such as machine learning and deep learning with Raspberry Pi face detection since the Raspberry Pi makes the system cost-effective, easy to use, and improves performance. Furthermore, some images of a selected individual were shot with a camera and a python program in order to do face recognition. This paper proposes a facial recognition system that can detect faces from direct and indirect images. We call this system FFDR, which is characterized by high speed and accuracy in the diagnosis of faces because it uses the Raspberry Pi 4 and the latest libraries and advanced environments in the Python language.