PunyVis: A Visual Analytics Approach for Identifying Homograph Phishing Attacks

Brett Fouss, Dennis M. Ross, A. Wollaber, Steven R. Gomez
{"title":"PunyVis: A Visual Analytics Approach for Identifying Homograph Phishing Attacks","authors":"Brett Fouss, Dennis M. Ross, A. Wollaber, Steven R. Gomez","doi":"10.1109/VizSec48167.2019.9161590","DOIUrl":null,"url":null,"abstract":"Attackers seeking to deceive web users into visiting malicious websites can exploit limitations of the tools intended to help browsers translate domain names containing non-ASCII characters, or internationalized domain names (IDNs). These attacks, called homograph phishing, involve registering Unicode domain names that are visually similar to legitimate ones but direct users to distinct servers. Tools exist to identify when domains use non-ASCII characters, which get translated by the Punycode protocol to work with the Domain Name System (DNS); however, these tools cannot automatically distinguish between benign use cases and ones with malicious intent, leading to high rates of false-positive alerts and increasing the workload of analysts looking for evidence of homograph phishing.To address this problem, we present PunyVis, a visual analytics system for exploring and identifying potential homograph attacks on large network datasets. By targeting instances of Punycode that use easily-confusable ASCII characters to spoof popular websites, PunyVis quickly condenses large datasets into a small number of potentially malicious records. Using the interactive tool, analysts can evaluate potential phishing instances and view supporting information from multiple data sources, as well as gain insight about overall risk and threat regarding homograph attacks. We demonstrate how PunyVis supports analysts in a case study with domain experts, and identified divergent analysis strategies and the need for interactions that support how analysts begin exploration and pivot around hypotheses. Finally, we discuss design implications and opportunities for cyber visual analytics.","PeriodicalId":242942,"journal":{"name":"2019 IEEE Symposium on Visualization for Cyber Security (VizSec)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Symposium on Visualization for Cyber Security (VizSec)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VizSec48167.2019.9161590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Attackers seeking to deceive web users into visiting malicious websites can exploit limitations of the tools intended to help browsers translate domain names containing non-ASCII characters, or internationalized domain names (IDNs). These attacks, called homograph phishing, involve registering Unicode domain names that are visually similar to legitimate ones but direct users to distinct servers. Tools exist to identify when domains use non-ASCII characters, which get translated by the Punycode protocol to work with the Domain Name System (DNS); however, these tools cannot automatically distinguish between benign use cases and ones with malicious intent, leading to high rates of false-positive alerts and increasing the workload of analysts looking for evidence of homograph phishing.To address this problem, we present PunyVis, a visual analytics system for exploring and identifying potential homograph attacks on large network datasets. By targeting instances of Punycode that use easily-confusable ASCII characters to spoof popular websites, PunyVis quickly condenses large datasets into a small number of potentially malicious records. Using the interactive tool, analysts can evaluate potential phishing instances and view supporting information from multiple data sources, as well as gain insight about overall risk and threat regarding homograph attacks. We demonstrate how PunyVis supports analysts in a case study with domain experts, and identified divergent analysis strategies and the need for interactions that support how analysts begin exploration and pivot around hypotheses. Finally, we discuss design implications and opportunities for cyber visual analytics.
PunyVis:一种识别同形词网络钓鱼攻击的可视化分析方法
攻击者试图欺骗网络用户访问恶意网站,可以利用工具的限制来帮助浏览器翻译包含非ascii字符的域名或国际化域名(idn)。这些攻击被称为同形图网络钓鱼,涉及注册Unicode域名,这些域名在视觉上与合法域名相似,但将用户引导到不同的服务器。工具存在,以确定当域使用非ascii字符,得到翻译的Punycode协议与域名系统(DNS)工作;然而,这些工具不能自动区分善意的用例和恶意的用例,导致误报警报的比率很高,并增加了分析师寻找同义词网络钓鱼证据的工作量。为了解决这个问题,我们提出了PunyVis,一个可视化分析系统,用于探索和识别大型网络数据集上潜在的同形词攻击。通过瞄准使用容易混淆的ASCII字符来欺骗流行网站的Punycode实例,PunyVis迅速将大型数据集压缩成少量潜在的恶意记录。使用交互式工具,分析人员可以评估潜在的网络钓鱼实例,并查看来自多个数据源的支持信息,还可以深入了解有关同形词攻击的总体风险和威胁。我们演示了PunyVis如何在与领域专家的案例研究中支持分析师,并确定了不同的分析策略和支持分析师如何开始探索和围绕假设进行交互的需求。最后,我们讨论了网络视觉分析的设计含义和机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信