Trans-Attention Multiple Instance Learning for Cancer Tissue Classification in Digital Histopathology Images

A. Alharbi, Yaqi Wang, Qianni Zhang
{"title":"Trans-Attention Multiple Instance Learning for Cancer Tissue Classification in Digital Histopathology Images","authors":"A. Alharbi, Yaqi Wang, Qianni Zhang","doi":"10.1145/3484424.3484437","DOIUrl":null,"url":null,"abstract":"The detection of cancerous tissue in histopathological slides is of great value in both clinical practice and pathology research. This paper presents a novel approach that targets automatically classifying cancer tissue by leveraging an attention multiple instance learning scheme; an attention-equivalent neural network-based permutation-invariant aggregation operator applied on the multi-instance learning network. Additionally, we propose a Trans-AMIL approach which is designed to apply Transfer Learning pre-trained models and learn the distribution of the bag label probability using neural networks. We demonstrate experimentally that our approach outperforms several conventional deep learning-based methods on an open BreakHis cancer histopathology dataset.","PeriodicalId":225954,"journal":{"name":"Proceedings of the 6th International Conference on Biomedical Signal and Image Processing","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Biomedical Signal and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3484424.3484437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The detection of cancerous tissue in histopathological slides is of great value in both clinical practice and pathology research. This paper presents a novel approach that targets automatically classifying cancer tissue by leveraging an attention multiple instance learning scheme; an attention-equivalent neural network-based permutation-invariant aggregation operator applied on the multi-instance learning network. Additionally, we propose a Trans-AMIL approach which is designed to apply Transfer Learning pre-trained models and learn the distribution of the bag label probability using neural networks. We demonstrate experimentally that our approach outperforms several conventional deep learning-based methods on an open BreakHis cancer histopathology dataset.
跨注意多实例学习在数字组织病理学图像中的肿瘤组织分类
组织病理切片中癌组织的检测在临床和病理研究中都具有重要的价值。本文提出了一种利用注意力多实例学习方案对肿瘤组织进行自动分类的新方法;一种基于注意等效神经网络的排列不变聚合算子应用于多实例学习网络。此外,我们提出了一种Trans-AMIL方法,该方法旨在应用迁移学习预训练模型,并使用神经网络学习袋标签概率的分布。我们通过实验证明,在开放的BreakHis癌症组织病理学数据集上,我们的方法优于几种传统的基于深度学习的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信