A New SiC Split-gate MOSFET Structure With Protruded P-base and the Mesa above JFET for Improving HF-FOM

Kunlin Li, Y. Zhang, Wei Zhong, Xiaochuan Deng, Xiao Yang, Hang Chen, Bo Zhang
{"title":"A New SiC Split-gate MOSFET Structure With Protruded P-base and the Mesa above JFET for Improving HF-FOM","authors":"Kunlin Li, Y. Zhang, Wei Zhong, Xiaochuan Deng, Xiao Yang, Hang Chen, Bo Zhang","doi":"10.1109/SSLChinaIFWS49075.2019.9019759","DOIUrl":null,"url":null,"abstract":"A novel 4H-SiC MOSFET (PM-MOSFET) for rated 3.3 kV applications is proposed, which features the protruded P-base and the mesa above JFET. Numerical simulation based on Silvaco is carried out to investigate the benefits of the proposed structure. The on-state resistance of PM-MOSFET is 11.9 mΩ·cm2, which is dramatically lower compared to on-resistance of 18.2 mΩ·cm2 of the traditional split-gate MOSFET (SG-MOSFET). The Crss of SG-MOSFET extracted at Vd = 1800 V is 17.5 pF/cm2, while the Crss of PM-MOS extracted is 6.5 pF/cm2, which is three times lower than that of the SG-MOSFET. It is demonstrated that the PM-MOSFET structure is superior to the SG-MOSFET. More importantly, the benefits above are achieved without degradation of other performances of MOSFET. As a result, the PM-MOSFET presents superior figure of merit ( HF-FOM) (Ron × Crss) than that of the SG-MOSFET. The PM-MOSFET achieves much faster switching speed than the SG-MOSFET.","PeriodicalId":315846,"journal":{"name":"2019 16th China International Forum on Solid State Lighting & 2019 International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 16th China International Forum on Solid State Lighting & 2019 International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSLChinaIFWS49075.2019.9019759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A novel 4H-SiC MOSFET (PM-MOSFET) for rated 3.3 kV applications is proposed, which features the protruded P-base and the mesa above JFET. Numerical simulation based on Silvaco is carried out to investigate the benefits of the proposed structure. The on-state resistance of PM-MOSFET is 11.9 mΩ·cm2, which is dramatically lower compared to on-resistance of 18.2 mΩ·cm2 of the traditional split-gate MOSFET (SG-MOSFET). The Crss of SG-MOSFET extracted at Vd = 1800 V is 17.5 pF/cm2, while the Crss of PM-MOS extracted is 6.5 pF/cm2, which is three times lower than that of the SG-MOSFET. It is demonstrated that the PM-MOSFET structure is superior to the SG-MOSFET. More importantly, the benefits above are achieved without degradation of other performances of MOSFET. As a result, the PM-MOSFET presents superior figure of merit ( HF-FOM) (Ron × Crss) than that of the SG-MOSFET. The PM-MOSFET achieves much faster switching speed than the SG-MOSFET.
一种新的具有突出p基和JFET上方台面的SiC分栅MOSFET结构,以改善HF-FOM
提出了一种适用于额定3.3 kV应用的新型4H-SiC MOSFET (PM-MOSFET),其特点是突出的p基和JFET上方的台面。基于Silvaco的数值模拟研究了该结构的优点。PM-MOSFET的导通电阻为11.9 mΩ·cm2,大大低于传统分栅MOSFET (SG-MOSFET)的18.2 mΩ·cm2。在Vd = 1800 V下提取的SG-MOSFET的cross为17.5 pF/cm2,而PM-MOS的cross为6.5 pF/cm2,比SG-MOSFET的cross低3倍。结果表明,PM-MOSFET的结构优于SG-MOSFET。更重要的是,在不降低MOSFET其他性能的情况下实现上述优点。因此,PM-MOSFET表现出优于SG-MOSFET的品质因数(HF-FOM) (Ron × cross)。PM-MOSFET实现了比SG-MOSFET更快的开关速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信