A Generic Machine Learning Based Approach for Addressee Detection In Multiparty Interaction

Usman Malik, Mukesh Barange, Naser Ghannad, Julien Saunier, A. Pauchet
{"title":"A Generic Machine Learning Based Approach for Addressee Detection In Multiparty Interaction","authors":"Usman Malik, Mukesh Barange, Naser Ghannad, Julien Saunier, A. Pauchet","doi":"10.1145/3308532.3329462","DOIUrl":null,"url":null,"abstract":"Addressee detection is one of the most fundamental tasks for seamless dialogue management and turn taking in human-agent interaction. Whereas addressee detection is implicit in dyadic interaction, it becomes a challenging task in multiparty interactions when more than two participants are involved. Existing research works employ either rule-based or statistical approaches for addressee detection. However, most of these works either have been tested on a single data set or only support a fixed number of participants. In this article, we propose a model based on generic features to predict the addressee in data sets with varying number of participants. The results tested on two different corpora show that the proposed model outperforms existing baselines.","PeriodicalId":112642,"journal":{"name":"Proceedings of the 19th ACM International Conference on Intelligent Virtual Agents","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th ACM International Conference on Intelligent Virtual Agents","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3308532.3329462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Addressee detection is one of the most fundamental tasks for seamless dialogue management and turn taking in human-agent interaction. Whereas addressee detection is implicit in dyadic interaction, it becomes a challenging task in multiparty interactions when more than two participants are involved. Existing research works employ either rule-based or statistical approaches for addressee detection. However, most of these works either have been tested on a single data set or only support a fixed number of participants. In this article, we propose a model based on generic features to predict the addressee in data sets with varying number of participants. The results tested on two different corpora show that the proposed model outperforms existing baselines.
基于通用机器学习的多方交互中地址检测方法
收件人检测是人机交互中实现无缝对话管理和轮询的最基本任务之一。收件人检测在二元交互中是隐含的,而在涉及两个以上参与者的多方交互中,收件人检测成为一项具有挑战性的任务。现有的研究工作采用基于规则或统计的方法来检测收件人。然而,这些工作中的大多数要么在单一数据集上进行了测试,要么只支持固定数量的参与者。在本文中,我们提出了一个基于通用特征的模型来预测具有不同参与者数量的数据集中的收件人。在两种不同的语料库上的测试结果表明,所提出的模型优于现有的基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信