Optimal control of partially unknown constrained‐input systems: A dynamic event‐triggered‐based approach

Haoming Zou, Guoshan Zhang
{"title":"Optimal control of partially unknown constrained‐input systems: A dynamic event‐triggered‐based approach","authors":"Haoming Zou, Guoshan Zhang","doi":"10.1002/oca.3046","DOIUrl":null,"url":null,"abstract":"This article presents an identifier‐based dynamic event‐triggered optimal control scheme for partially unknown constrained‐input systems. First, an event‐triggered‐based neural network (NN) identifier is constructed to estimate the unknown system dynamics. Then, an adaptive dynamic programming algorithm with actor‐critic NN structure is adopted to obtain an approximate solution of the Hamilton–Jacobi–Bellman equation. The above considers that transmitted measurements are only available at the triggering instants, and the update of all three NN weights depends on the established dynamic event‐triggered mechanism. Different from existing static event‐triggered mechanism, the proposed dynamic event‐triggered mechanism can further obtain a reasonable trade‐off between performance and communication resources by introducing a dynamic variable, and the Zeno behavior can be excluded by devising an exponential term. It is proved that all the closed‐loop system signals are uniformly ultimately bounded under the established event‐triggered mechanism. Finally, two numerical examples are provided, including the spring‐mass‐damper system, to validate the proposed control scheme.","PeriodicalId":105945,"journal":{"name":"Optimal Control Applications and Methods","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimal Control Applications and Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/oca.3046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents an identifier‐based dynamic event‐triggered optimal control scheme for partially unknown constrained‐input systems. First, an event‐triggered‐based neural network (NN) identifier is constructed to estimate the unknown system dynamics. Then, an adaptive dynamic programming algorithm with actor‐critic NN structure is adopted to obtain an approximate solution of the Hamilton–Jacobi–Bellman equation. The above considers that transmitted measurements are only available at the triggering instants, and the update of all three NN weights depends on the established dynamic event‐triggered mechanism. Different from existing static event‐triggered mechanism, the proposed dynamic event‐triggered mechanism can further obtain a reasonable trade‐off between performance and communication resources by introducing a dynamic variable, and the Zeno behavior can be excluded by devising an exponential term. It is proved that all the closed‐loop system signals are uniformly ultimately bounded under the established event‐triggered mechanism. Finally, two numerical examples are provided, including the spring‐mass‐damper system, to validate the proposed control scheme.
部分未知约束输入系统的最优控制:基于动态事件触发的方法
针对部分未知约束输入系统,提出了一种基于标识符的动态事件触发最优控制方案。首先,构建基于事件触发的神经网络(NN)辨识器来估计未知的系统动态。然后,采用行动者-评论家NN结构的自适应动态规划算法,得到Hamilton-Jacobi-Bellman方程的近似解。上述考虑到传输的测量值仅在触发时刻可用,并且所有三个NN权值的更新依赖于已建立的动态事件触发机制。与现有的静态事件触发机制不同,本文提出的动态事件触发机制通过引入动态变量,进一步在性能和通信资源之间获得合理的权衡,并通过设计指数项来排除芝诺行为。证明了在所建立的事件触发机制下,闭环系统的所有信号最终都是一致有界的。最后,给出了两个数值算例,包括弹簧-质量-阻尼系统,以验证所提出的控制方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信