Detection of Almond Leaf Scorch with Artificial Intelligence for the Agriculture Industry

Alberto Cruz, Stephanie Magana, David Greco, L. Bellis, A. Luvisi
{"title":"Detection of Almond Leaf Scorch with Artificial Intelligence for the Agriculture Industry","authors":"Alberto Cruz, Stephanie Magana, David Greco, L. Bellis, A. Luvisi","doi":"10.1109/AI4I54798.2022.00007","DOIUrl":null,"url":null,"abstract":"Almond Leaf Scorch Disease (ALSD) poses a signfficant threat to almond production worldwide. Deep learning algorithms have potential to enable growers of all scales to identify infected trees using photos captured with a smart camera. This approach diagnoses faster than humans without requiring expert knowledge, does not require third-party laboratory testing (PCR), and has higher accuracy than multispectral satillite imaging. Data was collected for this work by long-term observation of Prunus dulcis L. for symptoms and validated ALSD with PCR testing. 515 images were collected. We experimented with five pre-trained convolutional neural networks: DenseNet 201, Inception V3, ResNet 101 V2, VGG 19, and Xception. DenseNet201 demonstrates that it is possible to detect ALSD versus healthy control, Red Leaf Blotch, and various other diseases with an 88.72% accuracy. These results show promise for cheap and fast detection of the disease. Future work will focus on imaging and detection of the disease in vivo.","PeriodicalId":345427,"journal":{"name":"2022 5th International Conference on Artificial Intelligence for Industries (AI4I)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th International Conference on Artificial Intelligence for Industries (AI4I)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AI4I54798.2022.00007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Almond Leaf Scorch Disease (ALSD) poses a signfficant threat to almond production worldwide. Deep learning algorithms have potential to enable growers of all scales to identify infected trees using photos captured with a smart camera. This approach diagnoses faster than humans without requiring expert knowledge, does not require third-party laboratory testing (PCR), and has higher accuracy than multispectral satillite imaging. Data was collected for this work by long-term observation of Prunus dulcis L. for symptoms and validated ALSD with PCR testing. 515 images were collected. We experimented with five pre-trained convolutional neural networks: DenseNet 201, Inception V3, ResNet 101 V2, VGG 19, and Xception. DenseNet201 demonstrates that it is possible to detect ALSD versus healthy control, Red Leaf Blotch, and various other diseases with an 88.72% accuracy. These results show promise for cheap and fast detection of the disease. Future work will focus on imaging and detection of the disease in vivo.
农业用人工智能检测杏仁叶焦化
杏仁叶焦枯病(ALSD)严重威胁着世界范围内的杏仁生产。深度学习算法有可能使各种规模的种植者利用智能相机拍摄的照片识别受感染的树木。这种方法比人类诊断更快,不需要专家知识,不需要第三方实验室检测(PCR),并且比多光谱卫星成像具有更高的准确性。本工作通过长期观察桃李的症状收集资料,并通过PCR检测验证ALSD。共收集图像515张。我们实验了5个预训练的卷积神经网络:DenseNet 201、Inception V3、ResNet 101 V2、VGG 19和Xception。DenseNet201表明,ALSD与健康对照、红叶斑病和其他各种疾病的检测准确率为88.72%。这些结果显示了廉价和快速检测该疾病的希望。未来的工作将集中在疾病的体内成像和检测上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信