Search Strategies Guided by the Evidence for the Selection of Basis Functions in Regression

Ignacio Barrio, E. Romero, L. B. Muñoz
{"title":"Search Strategies Guided by the Evidence for the Selection of Basis Functions in Regression","authors":"Ignacio Barrio, E. Romero, L. B. Muñoz","doi":"10.1109/IJCNN.2007.4370996","DOIUrl":null,"url":null,"abstract":"This work addresses the problem of selecting a subset of basis functions for a model linear in the parameters for regression tasks. Basis functions from a set of candidates are explicitly selected with search methods coming from the feature selection field. Following approximate Bayesian inference, the search is guided by the evidence. The tradeoff between model complexity and computational cost can be controlled by choosing the search strategy. The experimental results show that, under mild assumptions, compact and very competitive models are usually found.","PeriodicalId":350091,"journal":{"name":"2007 International Joint Conference on Neural Networks","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2007.4370996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work addresses the problem of selecting a subset of basis functions for a model linear in the parameters for regression tasks. Basis functions from a set of candidates are explicitly selected with search methods coming from the feature selection field. Following approximate Bayesian inference, the search is guided by the evidence. The tradeoff between model complexity and computational cost can be controlled by choosing the search strategy. The experimental results show that, under mild assumptions, compact and very competitive models are usually found.
基于证据的回归基函数选择搜索策略
这项工作解决了为回归任务参数中的线性模型选择基函数子集的问题。使用来自特征选择字段的搜索方法显式地选择候选集合中的基函数。根据近似贝叶斯推理,搜索以证据为指导。可以通过选择搜索策略来控制模型复杂度和计算成本之间的权衡。实验结果表明,在温和的假设条件下,通常会出现紧凑且竞争激烈的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信