An efficient hybrid conjugate gradient method with sufficient descent property for unconstrained optimization

Mina Lotfi, Seyed Mohammad Hosseini
{"title":"An efficient hybrid conjugate gradient method with sufficient descent property for unconstrained optimization","authors":"Mina Lotfi, Seyed Mohammad Hosseini","doi":"10.1080/10556788.2021.1977808","DOIUrl":null,"url":null,"abstract":"In order to take advantage of the strong theoretical properties of the FR method and computational efficiency of the method, we present a new hybrid conjugate gradient method based on the convex combination of these methods. In our method, the search directions satisfy the sufficient descent condition independent of any line search. Under some standard assumptions, we established global convergence property of our proposed method for general functions. Numerical comparisons on some test problems from the CUTEst library illustrate the efficiency and robustness of our proposed method in practice.","PeriodicalId":124811,"journal":{"name":"Optimization Methods and Software","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods and Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10556788.2021.1977808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In order to take advantage of the strong theoretical properties of the FR method and computational efficiency of the method, we present a new hybrid conjugate gradient method based on the convex combination of these methods. In our method, the search directions satisfy the sufficient descent condition independent of any line search. Under some standard assumptions, we established global convergence property of our proposed method for general functions. Numerical comparisons on some test problems from the CUTEst library illustrate the efficiency and robustness of our proposed method in practice.
一种有效的混合共轭梯度法,具有充分的下降性质,用于无约束优化
为了充分利用FR方法较强的理论性和计算效率,提出了一种基于这些方法的凸组合的混合共轭梯度方法。在我们的方法中,搜索方向满足独立于任何直线搜索的充分下降条件。在一些标准假设下,我们建立了该方法对一般函数的全局收敛性。通过CUTEst库中一些测试问题的数值比较,验证了该方法的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信