Classification of Cardiac Abnormalities From ECG Signals Using SE-ResNet

Zhaowei Zhu, Han Wang, Tingting Zhao, Yangming Guo, Zhuoyang Xu, Zhuo Liu, Siqi Liu, Xiang Lan, Xingzhi Sun, Mengling Feng
{"title":"Classification of Cardiac Abnormalities From ECG Signals Using SE-ResNet","authors":"Zhaowei Zhu, Han Wang, Tingting Zhao, Yangming Guo, Zhuoyang Xu, Zhuo Liu, Siqi Liu, Xiang Lan, Xingzhi Sun, Mengling Feng","doi":"10.22489/CinC.2020.281","DOIUrl":null,"url":null,"abstract":"In PhysioNet/Computing in Cardiology Challenge 2020, we developed an ensembled model based on SE-ResNet to classify cardiac abnormalities from 12-lead electrocardiogram (ECG) signals. We employed two residual neural network modules with squeeze-and-excitation blocks to learn from the first 10-second and 30-second segments of the signals. We used external open-source data for validation and fine-tuning during the model development phase. We designed a multi-label loss to emphasize the impact of wrong predictions during training. We built a rule-based bradycardia model based on clinical knowledge to correct the output. All these efforts helped us to achieve a robust classification performance. Our final model achieved a challenge validation score of 0.682 and a full test score of 0.514, placing our team HeartBeats 3rd out of 41 in the official ranking. We believed that our model has a great potential to be applied in the actual clinical practice, and planned to further extend the research after the challenge.","PeriodicalId":407282,"journal":{"name":"2020 Computing in Cardiology","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Computing in Cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2020.281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

In PhysioNet/Computing in Cardiology Challenge 2020, we developed an ensembled model based on SE-ResNet to classify cardiac abnormalities from 12-lead electrocardiogram (ECG) signals. We employed two residual neural network modules with squeeze-and-excitation blocks to learn from the first 10-second and 30-second segments of the signals. We used external open-source data for validation and fine-tuning during the model development phase. We designed a multi-label loss to emphasize the impact of wrong predictions during training. We built a rule-based bradycardia model based on clinical knowledge to correct the output. All these efforts helped us to achieve a robust classification performance. Our final model achieved a challenge validation score of 0.682 and a full test score of 0.514, placing our team HeartBeats 3rd out of 41 in the official ranking. We believed that our model has a great potential to be applied in the actual clinical practice, and planned to further extend the research after the challenge.
利用SE-ResNet从心电信号中分类心脏异常
在PhysioNet/Computing In Cardiology Challenge 2020中,我们开发了一个基于SE-ResNet的集成模型,用于从12导联心电图(ECG)信号中分类心脏异常。我们使用了两个残差神经网络模块,分别具有挤压和激励模块,从信号的前10秒和30秒片段中学习。在模型开发阶段,我们使用外部开源数据进行验证和微调。我们设计了一个多标签损失来强调训练过程中错误预测的影响。我们根据临床知识建立了一个基于规则的心动过缓模型来纠正输出。所有这些努力都帮助我们实现了稳健的分类性能。我们的最终模型获得了0.682的挑战验证分数和0.514的完整测试分数,使我们的团队HeartBeats在41个官方排名中排名第三。我们认为我们的模型在实际临床实践中有很大的应用潜力,并计划在挑战后进一步扩展研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信