{"title":"Stochastic Renormalization Group and Gradient Flow in Scalar Field Theory","authors":"A. Carosso, A. Hasenfratz, E. Neil","doi":"10.22323/1.363.0287","DOIUrl":null,"url":null,"abstract":"Recently, the connections between gradient flow and renormalization group have been explored analytically and numerically. Gradient flow (when modified by a field rescaling) can be characterized as a continuous blocking transformation. In this work, we draw a connection between gradient flow and functional renormalization group by describing how FRG can be represented by a stochastic process, and how the stochastic observables relate to gradient flow observables. The relation implies correlator scaling formulae that can be applied numerically in lattice simulations. We present preliminary results on anomalous dimensions obtained from such measurements in the context of 3-dimensional lattice $\\phi^4$ theory.","PeriodicalId":147987,"journal":{"name":"Proceedings of 37th International Symposium on Lattice Field Theory — PoS(LATTICE2019)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 37th International Symposium on Lattice Field Theory — PoS(LATTICE2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.363.0287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Recently, the connections between gradient flow and renormalization group have been explored analytically and numerically. Gradient flow (when modified by a field rescaling) can be characterized as a continuous blocking transformation. In this work, we draw a connection between gradient flow and functional renormalization group by describing how FRG can be represented by a stochastic process, and how the stochastic observables relate to gradient flow observables. The relation implies correlator scaling formulae that can be applied numerically in lattice simulations. We present preliminary results on anomalous dimensions obtained from such measurements in the context of 3-dimensional lattice $\phi^4$ theory.