Asking the Right Questions in Crowd Data Sourcing

Rubi Boim, Ohad Greenshpan, T. Milo, Slava Novgorodov, N. Polyzotis, W. Tan
{"title":"Asking the Right Questions in Crowd Data Sourcing","authors":"Rubi Boim, Ohad Greenshpan, T. Milo, Slava Novgorodov, N. Polyzotis, W. Tan","doi":"10.1109/ICDE.2012.122","DOIUrl":null,"url":null,"abstract":"Crowd-based data sourcing is a new and powerful data procurement paradigm that engages Web users to collectively contribute information. In this work, we target the problem of gathering data from the crowd in an economical and principled fashion. We present Ask It!, a system that allows interactive data sourcing applications to effectively determine which questions should be directed to which users for reducing the uncertainty about the collected data. Ask It! uses a set of novel algorithms for minimizing the number of probing (questions) required from the different users. We demonstrate the challenge and our solution in the context of a multiple-choice question game played by the ICDE'12 attendees, targeted to gather information on the conference's publications, authors and colleagues.","PeriodicalId":321608,"journal":{"name":"2012 IEEE 28th International Conference on Data Engineering","volume":"415 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"80","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 28th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2012.122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 80

Abstract

Crowd-based data sourcing is a new and powerful data procurement paradigm that engages Web users to collectively contribute information. In this work, we target the problem of gathering data from the crowd in an economical and principled fashion. We present Ask It!, a system that allows interactive data sourcing applications to effectively determine which questions should be directed to which users for reducing the uncertainty about the collected data. Ask It! uses a set of novel algorithms for minimizing the number of probing (questions) required from the different users. We demonstrate the challenge and our solution in the context of a multiple-choice question game played by the ICDE'12 attendees, targeted to gather information on the conference's publications, authors and colleagues.
在人群数据来源中提出正确的问题
基于群体的数据源是一种新的、强大的数据获取范例,它让Web用户共同贡献信息。在这项工作中,我们的目标是以经济和原则的方式从人群中收集数据的问题。我们呈现Ask It!,一个系统,它允许交互式数据源应用程序有效地确定哪些问题应该针对哪些用户,以减少收集数据的不确定性。问它!使用一组新颖的算法来最小化不同用户所需的探测(问题)数量。我们在ICDE'12与会者玩的选择题游戏的背景下展示了挑战和我们的解决方案,旨在收集会议出版物,作者和同事的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信