Graph Processing with Different Data Structures

M. Chernoskutov
{"title":"Graph Processing with Different Data Structures","authors":"M. Chernoskutov","doi":"10.1109/BdKCSE48644.2019.9010608","DOIUrl":null,"url":null,"abstract":"The paper describes graph algorithms performance when using different types of data structures. To achieve that, we developed a multi-level graph processing system, which allows to create graph applications independently of any implementation details such as graph data structure or underlying computational architecture. We measure the performance of breadth-first search, max flow and random graph building algorithms when using compressed sparse row and adjacency matrix data structures. Experiments reveal different graph processing rates for different data structures, which indicates the need of using specific data structures for specific algorithms to achieve highest performance.","PeriodicalId":206080,"journal":{"name":"2019 Big Data, Knowledge and Control Systems Engineering (BdKCSE)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Big Data, Knowledge and Control Systems Engineering (BdKCSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BdKCSE48644.2019.9010608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper describes graph algorithms performance when using different types of data structures. To achieve that, we developed a multi-level graph processing system, which allows to create graph applications independently of any implementation details such as graph data structure or underlying computational architecture. We measure the performance of breadth-first search, max flow and random graph building algorithms when using compressed sparse row and adjacency matrix data structures. Experiments reveal different graph processing rates for different data structures, which indicates the need of using specific data structures for specific algorithms to achieve highest performance.
不同数据结构的图处理
本文描述了图算法在使用不同类型数据结构时的性能。为了实现这一目标,我们开发了一个多层次的图形处理系统,它允许独立于任何实现细节(如图形数据结构或底层计算架构)创建图形应用程序。当使用压缩稀疏行和邻接矩阵数据结构时,我们测量了宽度优先搜索、最大流量和随机图构建算法的性能。实验表明,对于不同的数据结构,不同的图处理速率是不同的,这表明需要使用特定的数据结构来实现特定的算法,以达到最高的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信