{"title":"Clique-graph matching by preserving global & local structure","authors":"Weizhi Nie, Anan Liu, Zan Gao, Yuting Su","doi":"10.1109/CVPR.2015.7299080","DOIUrl":null,"url":null,"abstract":"This paper originally proposes the clique-graph and further presents a clique-graph matching method by preserving global and local structures. Especially, we formulate the objective function of clique-graph matching with respective to two latent variables, the clique information in the original graph and the pairwise clique correspondence constrained by the one-to-one matching. Since the objective function is not jointly convex to both latent variables, we decompose it into two consecutive steps for optimization: 1) clique-to-clique similarity measure by preserving local unary and pairwise correspondences; 2) graph-to-graph similarity measure by preserving global clique-to-clique correspondence. Extensive experiments on the synthetic data and real images show that the proposed method can outperform representative methods especially when both noise and outliers exist.","PeriodicalId":444472,"journal":{"name":"2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2015.7299080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 60
Abstract
This paper originally proposes the clique-graph and further presents a clique-graph matching method by preserving global and local structures. Especially, we formulate the objective function of clique-graph matching with respective to two latent variables, the clique information in the original graph and the pairwise clique correspondence constrained by the one-to-one matching. Since the objective function is not jointly convex to both latent variables, we decompose it into two consecutive steps for optimization: 1) clique-to-clique similarity measure by preserving local unary and pairwise correspondences; 2) graph-to-graph similarity measure by preserving global clique-to-clique correspondence. Extensive experiments on the synthetic data and real images show that the proposed method can outperform representative methods especially when both noise and outliers exist.