Boundedness for finite subgroups of linear algebraic groups

C. Shramov, V. Vologodsky
{"title":"Boundedness for finite subgroups of linear algebraic groups","authors":"C. Shramov, V. Vologodsky","doi":"10.1090/tran/8511","DOIUrl":null,"url":null,"abstract":"We show the boundedness of finite subgroups in any anisotropic reductive algebraic group over a perfect field that contains all roots of 1. Also, we provide explicit bounds for orders of finite subgroups of automorphism groups of Severi-Brauer varieties and quadrics over such fields.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tran/8511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We show the boundedness of finite subgroups in any anisotropic reductive algebraic group over a perfect field that contains all roots of 1. Also, we provide explicit bounds for orders of finite subgroups of automorphism groups of Severi-Brauer varieties and quadrics over such fields.
线性代数群的有限子群的有界性
在包含1的所有根的完美域上,给出了任意各向异性代数群的有限子群的有界性。此外,我们还给出了在这些域上的Severi-Brauer变元和二次元的自同构群的有限子群的阶的显式界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信