Cooperative Learning for Multi-perspective Image Classification

Nicholas Nordlund, H. Kwon, L. Tassiulas
{"title":"Cooperative Learning for Multi-perspective Image Classification","authors":"Nicholas Nordlund, H. Kwon, L. Tassiulas","doi":"10.1109/SMARTCOMP.2019.00032","DOIUrl":null,"url":null,"abstract":"Data gathered from dense sensor networks is often highly correlated across collocated sensors. For example, in video surveillance networks, multiple cameras can observe the same object from multiple angles. Despite the spatial and temporal dependencies between video frames from different cameras, the deep learning algorithms used in today's video analytics problems treat all frames as independent inputs to image classifiers and object detectors. The outputs of these classifiers and detectors on multiple frames are then fused to extract information about the underlying sensor region. We present a cooperative learning framework that allows sensors to train deep learning systems on their own local data and compressed insights from neighboring sensors' input data. This system fuses sensor data before classification to allow learning agents to more naturally handle correlated inputs and cooperate with neighboring sensors with minimal communication costs.","PeriodicalId":253364,"journal":{"name":"2019 IEEE International Conference on Smart Computing (SMARTCOMP)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Smart Computing (SMARTCOMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMARTCOMP.2019.00032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Data gathered from dense sensor networks is often highly correlated across collocated sensors. For example, in video surveillance networks, multiple cameras can observe the same object from multiple angles. Despite the spatial and temporal dependencies between video frames from different cameras, the deep learning algorithms used in today's video analytics problems treat all frames as independent inputs to image classifiers and object detectors. The outputs of these classifiers and detectors on multiple frames are then fused to extract information about the underlying sensor region. We present a cooperative learning framework that allows sensors to train deep learning systems on their own local data and compressed insights from neighboring sensors' input data. This system fuses sensor data before classification to allow learning agents to more naturally handle correlated inputs and cooperate with neighboring sensors with minimal communication costs.
多视角图像分类的合作学习
从密集的传感器网络中收集的数据通常在配置的传感器之间高度相关。例如,在视频监控网络中,多个摄像头可以从多个角度观察同一个物体。尽管来自不同摄像机的视频帧之间存在空间和时间依赖性,但在当今的视频分析问题中使用的深度学习算法将所有帧视为图像分类器和目标检测器的独立输入。然后将这些分类器和检测器在多个帧上的输出融合以提取有关底层传感器区域的信息。我们提出了一个合作学习框架,该框架允许传感器根据自己的本地数据和来自邻近传感器输入数据的压缩见解来训练深度学习系统。该系统在分类前融合传感器数据,使学习代理能够更自然地处理相关输入,并以最小的通信成本与相邻传感器合作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信