Scale space consistency of piecewise constant least squares estimators - another look at the regressogram

L. Boysen, V. Liebscher, A. Munk, O. Wittich
{"title":"Scale space consistency of piecewise constant least squares estimators - another look at the regressogram","authors":"L. Boysen, V. Liebscher, A. Munk, O. Wittich","doi":"10.1214/074921707000000274","DOIUrl":null,"url":null,"abstract":"We study the asymptotic behavior of piecewise constant least squares regression estimates, when the number of partitions of the estimate is penalized. We show that the estimator is consistent in the relevant metric if the signal is in L 2 ((0,1)), the space of cadlag functions equipped with the Skorokhod metric or C((0,1)) equipped with the supremum metric. Moreover, we consider the family of estimates under a varying smoothing parameter, also called scale space. We prove convergence of the empirical scale space towards its deterministic target.","PeriodicalId":416422,"journal":{"name":"Ims Lecture Notes Monograph Series","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ims Lecture Notes Monograph Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/074921707000000274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

We study the asymptotic behavior of piecewise constant least squares regression estimates, when the number of partitions of the estimate is penalized. We show that the estimator is consistent in the relevant metric if the signal is in L 2 ((0,1)), the space of cadlag functions equipped with the Skorokhod metric or C((0,1)) equipped with the supremum metric. Moreover, we consider the family of estimates under a varying smoothing parameter, also called scale space. We prove convergence of the empirical scale space towards its deterministic target.
分段常数最小二乘估计的尺度空间一致性-回归图的另一种看法
我们研究了分段常数最小二乘回归估计的渐近性,当估计的分区数被惩罚时。我们证明了如果信号在l2((0,1))、具有Skorokhod度量的cadlag函数空间或具有最高度量的C((0,1))中,估计量在相关度量中是一致的。此外,我们考虑了在不同平滑参数下的估计族,也称为尺度空间。证明了经验尺度空间对其确定性目标的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信