{"title":"Writer Adaptive Training and Writing Variant Model Refinement for Offline Arabic Handwriting Recognition","authors":"P. Dreuw, David Rybach, C. Gollan, H. Ney","doi":"10.1109/ICDAR.2009.9","DOIUrl":null,"url":null,"abstract":"We present a writer adaptive training and writer clustering approach for an HMM based Arabic handwriting recognition system to handle different handwriting styles and their variations. Additionally, a writing variant model refinement for specific writing variants is proposed.Current approaches try to compensate the impact of different writing styles during preprocessing and normalization steps.Writer adaptive training with a CMLLR based feature adaptation is used to train writer dependent models. An unsupervised writer clustering with Bayesian information criterion based stopping condition for a CMLLR based feature adaptation during a two-pass decoding process is used to cluster different handwriting styles of unknown test writers.The proposed methods are evaluated on the IFN/ENIT Arabic handwriting database.","PeriodicalId":433762,"journal":{"name":"2009 10th International Conference on Document Analysis and Recognition","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 10th International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2009.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42
Abstract
We present a writer adaptive training and writer clustering approach for an HMM based Arabic handwriting recognition system to handle different handwriting styles and their variations. Additionally, a writing variant model refinement for specific writing variants is proposed.Current approaches try to compensate the impact of different writing styles during preprocessing and normalization steps.Writer adaptive training with a CMLLR based feature adaptation is used to train writer dependent models. An unsupervised writer clustering with Bayesian information criterion based stopping condition for a CMLLR based feature adaptation during a two-pass decoding process is used to cluster different handwriting styles of unknown test writers.The proposed methods are evaluated on the IFN/ENIT Arabic handwriting database.