Tomohiro Suzuki, Chernroj Sawasdivorn, Takashi Sasaki, H. Matsuura, K. Hane
{"title":"Multileveled tunable silicon grating array bonded on large scale integration substrate by polymers","authors":"Tomohiro Suzuki, Chernroj Sawasdivorn, Takashi Sasaki, H. Matsuura, K. Hane","doi":"10.1117/1.JOM.1.1.013501","DOIUrl":null,"url":null,"abstract":"Abstract. A multileveled tunable silicon grating array is designed and fabricated on a large-scale-integration (LSI) substrate. The grating consists of 250 single crystalline silicon ribbons of 260 nm in thickness, 400 μm in length, and 10 μm in period. The LSI substrate generates voltages to vary the heights of respective grating ribbons addressed by digital signal input. Each grating ribbon is attracted by an electrostatic force generated by 6-bit applied voltage in the range from 0 to 5 V. In the fabrication, the LSI substrate and a silicon-on-insulator wafer are bonded by the two kinds of polymers. A photosensitive polyimide polymer is used for patterning the bonding pads and also for bonding the wafers at the pressure of 0.25 MPa and the temperature of 350°C. Another epoxy polymer fills the space underneath the grating ribbons for subsequent process, which is finally removed by sacrificial etching to make the grating ribbons freestanding. The tunability of the grating is examined experimentally under the basic operation conditions.","PeriodicalId":127363,"journal":{"name":"Journal of Optical Microsystems","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optical Microsystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/1.JOM.1.1.013501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. A multileveled tunable silicon grating array is designed and fabricated on a large-scale-integration (LSI) substrate. The grating consists of 250 single crystalline silicon ribbons of 260 nm in thickness, 400 μm in length, and 10 μm in period. The LSI substrate generates voltages to vary the heights of respective grating ribbons addressed by digital signal input. Each grating ribbon is attracted by an electrostatic force generated by 6-bit applied voltage in the range from 0 to 5 V. In the fabrication, the LSI substrate and a silicon-on-insulator wafer are bonded by the two kinds of polymers. A photosensitive polyimide polymer is used for patterning the bonding pads and also for bonding the wafers at the pressure of 0.25 MPa and the temperature of 350°C. Another epoxy polymer fills the space underneath the grating ribbons for subsequent process, which is finally removed by sacrificial etching to make the grating ribbons freestanding. The tunability of the grating is examined experimentally under the basic operation conditions.