Automatic tuning of GPC synthesis parameters based on multi-objective optimization

Faten. Ben Aicha, F. Bouani, M. Ksouri
{"title":"Automatic tuning of GPC synthesis parameters based on multi-objective optimization","authors":"Faten. Ben Aicha, F. Bouani, M. Ksouri","doi":"10.1109/SM2ACD.2010.5672348","DOIUrl":null,"url":null,"abstract":"In this paper, a strategy for automatic tuning of predictive controller synthesis parameters based on multi-objective optimization (MOO) is proposed. This strategy integrates the genetic algorithm to generate the synthesis parameters (the prediction horizon, the control horizon and the cost weighting factor) making a compromise between closed loop performances (the overshoot, the variance of the control and the settling time). A simulation example is presented to illustrate the performance of this strategy in the on-line adjustment of generalized predictive control parameters.","PeriodicalId":442381,"journal":{"name":"2010 XIth International Workshop on Symbolic and Numerical Methods, Modeling and Applications to Circuit Design (SM2ACD)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 XIth International Workshop on Symbolic and Numerical Methods, Modeling and Applications to Circuit Design (SM2ACD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SM2ACD.2010.5672348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, a strategy for automatic tuning of predictive controller synthesis parameters based on multi-objective optimization (MOO) is proposed. This strategy integrates the genetic algorithm to generate the synthesis parameters (the prediction horizon, the control horizon and the cost weighting factor) making a compromise between closed loop performances (the overshoot, the variance of the control and the settling time). A simulation example is presented to illustrate the performance of this strategy in the on-line adjustment of generalized predictive control parameters.
基于多目标优化的GPC合成参数自动调谐
提出了一种基于多目标优化(MOO)的预测控制器综合参数自动整定策略。该策略结合遗传算法生成综合参数(预测水平、控制水平和代价加权因子),在闭环性能(超调量、控制方差和沉降时间)之间做出妥协。仿真实例说明了该策略在广义预测控制参数在线调整中的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信