Lattice walks ending on a coordinate hyperplane avoiding backtracking and repeats

John M. Machacek
{"title":"Lattice walks ending on a coordinate hyperplane avoiding backtracking and repeats","authors":"John M. Machacek","doi":"10.54550/ECA2022V2S1R3","DOIUrl":null,"url":null,"abstract":"We work with lattice walks in $\\mathbb{Z}^{r+1}$ using step set $\\{\\pm 1\\}^{r+1}$ that finish with $x_{r+1} = 0$. We further impose conditions of avoiding backtracking (i.e. $[v,-v]$) and avoiding consecutive steps (i.e. $[v,v]$) each possibly combined with restricting to the half-space $x_{r+1} \\geq 0$. We find in all cases the generating functions for such walks are algebraic and give explicit formulas for them. We also find polynomial recurrences for their coefficients. From the generating functions we find the asymptotic enumeration of each family of walks considered. The enumeration in special cases includes central binomial coefficients and Catalan numbers as well as relations to enumeration of another family of walks previously studied for which we provide bijection.","PeriodicalId":340033,"journal":{"name":"Enumerative Combinatorics and Applications","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enumerative Combinatorics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54550/ECA2022V2S1R3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We work with lattice walks in $\mathbb{Z}^{r+1}$ using step set $\{\pm 1\}^{r+1}$ that finish with $x_{r+1} = 0$. We further impose conditions of avoiding backtracking (i.e. $[v,-v]$) and avoiding consecutive steps (i.e. $[v,v]$) each possibly combined with restricting to the half-space $x_{r+1} \geq 0$. We find in all cases the generating functions for such walks are algebraic and give explicit formulas for them. We also find polynomial recurrences for their coefficients. From the generating functions we find the asymptotic enumeration of each family of walks considered. The enumeration in special cases includes central binomial coefficients and Catalan numbers as well as relations to enumeration of another family of walks previously studied for which we provide bijection.
点阵行走结束于一个坐标超平面,避免回溯和重复
我们使用步骤集$\{\pm 1\}^{r+1}$在$\mathbb{Z}^{r+1}$中处理点阵行走,该步骤集以$x_{r+1} = 0$结束。我们进一步施加避免回溯(即$[v,-v]$)和避免连续步骤(即$[v,v]$)的条件,每个条件都可能与限制到半空间$x_{r+1} \geq 0$相结合。我们发现在所有的情况下,这种行走的生成函数都是代数的,并给出了它们的显式公式。我们还找到了它们系数的多项式递归式。从生成函数中,我们得到了所考虑的每一类行走的渐近枚举。特殊情况下的枚举包括中心二项式系数和加泰罗尼亚数,以及与先前研究的另一个步行族的枚举的关系,我们提供了双射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信