{"title":"Multi-Rate Kalman Filter for Carrier Phase Recovery in 200 Gbps PDM Coherent Optical Receivers","authors":"Wrivu Sanyal, Srishti Sharma, P. Krishnamurthy","doi":"10.1109/NCC52529.2021.9530068","DOIUrl":null,"url":null,"abstract":"The Kalman filter is often used for tracking and estimation of effects such as LPN and NLPN in long haul coherent optical communication systems. However, real-time symbol-by-symbol estimation of these parameters is computationally challenging. We use a multi-rate Kalman filtering scheme that allows for different sampling and state update rates in the system. This scheme achieves high Q-factor by making use of maximum available samples while reducing computational load. Simulations are performed for 200 Gbps PDM-16-QAM system by transmitting 20000 symbols over 800 km optical channel. The filter has Q-factor of 17.25 dB with state estimates being updated after every 20 samples. The filter shows more than 1 dB improvement in Q-factor when compared to a KF where the intermediate samples are not utilised for phase estimation.","PeriodicalId":414087,"journal":{"name":"2021 National Conference on Communications (NCC)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC52529.2021.9530068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The Kalman filter is often used for tracking and estimation of effects such as LPN and NLPN in long haul coherent optical communication systems. However, real-time symbol-by-symbol estimation of these parameters is computationally challenging. We use a multi-rate Kalman filtering scheme that allows for different sampling and state update rates in the system. This scheme achieves high Q-factor by making use of maximum available samples while reducing computational load. Simulations are performed for 200 Gbps PDM-16-QAM system by transmitting 20000 symbols over 800 km optical channel. The filter has Q-factor of 17.25 dB with state estimates being updated after every 20 samples. The filter shows more than 1 dB improvement in Q-factor when compared to a KF where the intermediate samples are not utilised for phase estimation.