Neural control and fault simulation of 6/4 switched reluctance motor

N. Selvaganesan, D. Raja, S. Renganathan
{"title":"Neural control and fault simulation of 6/4 switched reluctance motor","authors":"N. Selvaganesan, D. Raja, S. Renganathan","doi":"10.1109/IICPE.2006.4685359","DOIUrl":null,"url":null,"abstract":"This paper presents fault simulation and neural network based optimal speed controller with good robustness properties for a 6/4 switched reluctance motor. The neuro controller is trained by the back propagation algorithm considering the current reference as the output, the error and its derivative as the inputs as like fuzzy logic controller. The performance of the proposed controller is compared with fuzzy logic controller, a classical proportional plus integral controller and the faults are simulated using Matlab simulink. The simulation result is presented to demonstrate remarkable performance of the proposed controller for the switched reluctance motor.","PeriodicalId":227812,"journal":{"name":"2006 India International Conference on Power Electronics","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 India International Conference on Power Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IICPE.2006.4685359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper presents fault simulation and neural network based optimal speed controller with good robustness properties for a 6/4 switched reluctance motor. The neuro controller is trained by the back propagation algorithm considering the current reference as the output, the error and its derivative as the inputs as like fuzzy logic controller. The performance of the proposed controller is compared with fuzzy logic controller, a classical proportional plus integral controller and the faults are simulated using Matlab simulink. The simulation result is presented to demonstrate remarkable performance of the proposed controller for the switched reluctance motor.
6/4开关磁阻电机的神经控制与故障仿真
本文对6/4开关磁阻电机进行了故障仿真和基于神经网络的鲁棒性较好的最优速度控制器。神经控制器采用模糊控制器的反向传播算法,以当前参考作为输出,误差及其导数作为输入。将该控制器的性能与模糊逻辑控制器、经典比例加积分控制器进行了比较,并利用Matlab simulink对故障进行了仿真。仿真结果表明,所设计的控制器对开关磁阻电机具有良好的控制性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信