C. R. da Silveira, J. Costa, M. T. Giraldi, Marcos A. R. Franco, P. Jorge
{"title":"Enhancement of refractive index sensitivity of the in-line Mach-Zehnder interferometer through bending","authors":"C. R. da Silveira, J. Costa, M. T. Giraldi, Marcos A. R. Franco, P. Jorge","doi":"10.1117/12.2028226","DOIUrl":null,"url":null,"abstract":"This work presents numerical results related to an in-line Mach-Zehnder interferometer used as a refractive index sensor. The in-line Mach-Zehnder is based on abrupt tapers in standard single mode optical fiber. Numerical simulations were carried out using commercial software based on Beam Propagation Method in order to analyze the sensitivity response in terms of wavelength shift when this sensor is bent at certain radii of curvature. We realized that application of bending in the In-line Mach-Zehnder interferometer enhanced considerably the sensitivity of this sensor to the external refractive index. The best result was achieved for a radius of curvature of 10 mm (~500 nm/RIU for the refractive index range of 1.33 to 1.41) improving the sensitivity about eight times in comparison with the case with no bent.","PeriodicalId":135913,"journal":{"name":"Iberoamerican Meeting of Optics and the Latin American Meeting of Optics, Lasers and Their Applications","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iberoamerican Meeting of Optics and the Latin American Meeting of Optics, Lasers and Their Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2028226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This work presents numerical results related to an in-line Mach-Zehnder interferometer used as a refractive index sensor. The in-line Mach-Zehnder is based on abrupt tapers in standard single mode optical fiber. Numerical simulations were carried out using commercial software based on Beam Propagation Method in order to analyze the sensitivity response in terms of wavelength shift when this sensor is bent at certain radii of curvature. We realized that application of bending in the In-line Mach-Zehnder interferometer enhanced considerably the sensitivity of this sensor to the external refractive index. The best result was achieved for a radius of curvature of 10 mm (~500 nm/RIU for the refractive index range of 1.33 to 1.41) improving the sensitivity about eight times in comparison with the case with no bent.