Selective Approach To Handling Topic Oriented Tasks On The World Wide Web

Amit Awekar, Jaewoo Kang
{"title":"Selective Approach To Handling Topic Oriented Tasks On The World Wide Web","authors":"Amit Awekar, Jaewoo Kang","doi":"10.1109/CIDM.2007.368894","DOIUrl":null,"url":null,"abstract":"We address the problem of handling topic oriented tasks on the World Wide Web. Our aim is to find most relevant and important pages for broad-topic queries while searching in a small set of candidate pages. We present a link analysis based algorithm SelHITS which is an improvement over Kleinberg's HITS algorithm. We introduce concept of virtual links to exploit latent information in the hyperlinked environment. Selective expansion of the root set and novel ranking strategy are the distinguishing features of our approach. Selective expansion method avoids topic drift and provides results consistent with only one interpretation of the query. Experimental evaluation and user feedback show that our algorithm indeed distills the most relevant and important pages for broad-topic queries. Trends in user feedback suggests that there exists a uniform notion of quality of search results within users","PeriodicalId":423707,"journal":{"name":"2007 IEEE Symposium on Computational Intelligence and Data Mining","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Symposium on Computational Intelligence and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIDM.2007.368894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We address the problem of handling topic oriented tasks on the World Wide Web. Our aim is to find most relevant and important pages for broad-topic queries while searching in a small set of candidate pages. We present a link analysis based algorithm SelHITS which is an improvement over Kleinberg's HITS algorithm. We introduce concept of virtual links to exploit latent information in the hyperlinked environment. Selective expansion of the root set and novel ranking strategy are the distinguishing features of our approach. Selective expansion method avoids topic drift and provides results consistent with only one interpretation of the query. Experimental evaluation and user feedback show that our algorithm indeed distills the most relevant and important pages for broad-topic queries. Trends in user feedback suggests that there exists a uniform notion of quality of search results within users
在万维网上处理主题导向任务的选择性方法
我们解决了在万维网上处理面向主题的任务的问题。我们的目标是在搜索一小部分候选页面的同时,为广泛的主题查询找到最相关和最重要的页面。我们提出了一种基于链接分析的SelHITS算法,它是对Kleinberg的HITS算法的改进。我们引入虚拟链接的概念来挖掘超链接环境中的潜在信息。选择性的根集扩展和新颖的排序策略是该方法的显著特点。选择性展开方法避免了主题漂移,提供的结果只与查询的一种解释一致。实验评估和用户反馈表明,我们的算法确实为广泛的主题查询提取了最相关和最重要的页面。用户反馈的趋势表明,用户对搜索结果的质量存在统一的概念
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信