Any questions? Automatic question detection in meetings

K. Boakye, Benoit Favre, Dilek Z. Hakkani-Tür
{"title":"Any questions? Automatic question detection in meetings","authors":"K. Boakye, Benoit Favre, Dilek Z. Hakkani-Tür","doi":"10.1109/ASRU.2009.5373293","DOIUrl":null,"url":null,"abstract":"In this paper, we describe our efforts toward the automatic detection of English questions in meetings. We analyze the utility of various features for this task, originating from three distinct classes: lexico-syntactic, turn-related, and pitch-related. Of particular interest is the use of parse tree information in classification, an approach as yet unexplored. Results from experiments on the ICSI MRDA corpus demonstrate that lexico-syntactic features are most useful for this task, with turn-and pitch-related features providing complementary information in combination. In addition, experiments using reference parse trees on the broadcast conversation portion of the OntoNotes release 2.9 data set illustrate the potential of parse trees to outperform word lexical features.","PeriodicalId":292194,"journal":{"name":"2009 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2009.5373293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

In this paper, we describe our efforts toward the automatic detection of English questions in meetings. We analyze the utility of various features for this task, originating from three distinct classes: lexico-syntactic, turn-related, and pitch-related. Of particular interest is the use of parse tree information in classification, an approach as yet unexplored. Results from experiments on the ICSI MRDA corpus demonstrate that lexico-syntactic features are most useful for this task, with turn-and pitch-related features providing complementary information in combination. In addition, experiments using reference parse trees on the broadcast conversation portion of the OntoNotes release 2.9 data set illustrate the potential of parse trees to outperform word lexical features.
有什么问题吗?会议中的自动问题检测
在本文中,我们描述了我们在会议英语问题自动检测方面所做的努力。我们分析了这项任务的各种功能的效用,这些功能来自三个不同的类别:词汇语法、转折相关和音高相关。特别有趣的是在分类中使用解析树信息,这是一种尚未探索的方法。在ICSI MRDA语料库上的实验结果表明,词汇-句法特征对该任务最有用,与转折和音高相关的特征组合提供了互补的信息。此外,在OntoNotes release 2.9数据集的广播会话部分上使用参考解析树的实验说明了解析树优于单词词汇特征的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信