Using a chain of LVQ neural networks for pattern recognition of EEG signals related to intermittent photic-stimulation

M. Kugler, H. S. Lopes
{"title":"Using a chain of LVQ neural networks for pattern recognition of EEG signals related to intermittent photic-stimulation","authors":"M. Kugler, H. S. Lopes","doi":"10.1109/SBRN.2002.1181465","DOIUrl":null,"url":null,"abstract":"This work reports the use of neural networks for pattern recognition in electroencephalographic signals related to intermittent photic-stimulation. Due to the low signal/noise ratio of this kind of signal, it was necessary the use of a spectrogram as a predictor and a chain of LVQ neural networks. The efficiency of this pattern recognition structure was tested for many different configurations of the neural networks parameters and different volunteers. A direct relationship between the dimension of the neural networks and their performance was observed. Results so far encourage new experiments and demonstrate the feasibility of the proposed system for real-time pattern recognition of complex signals.","PeriodicalId":157186,"journal":{"name":"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBRN.2002.1181465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

This work reports the use of neural networks for pattern recognition in electroencephalographic signals related to intermittent photic-stimulation. Due to the low signal/noise ratio of this kind of signal, it was necessary the use of a spectrogram as a predictor and a chain of LVQ neural networks. The efficiency of this pattern recognition structure was tested for many different configurations of the neural networks parameters and different volunteers. A direct relationship between the dimension of the neural networks and their performance was observed. Results so far encourage new experiments and demonstrate the feasibility of the proposed system for real-time pattern recognition of complex signals.
利用LVQ神经网络链对间歇光刺激相关的脑电信号进行模式识别
这项工作报告了使用神经网络在与间歇性光刺激相关的脑电图信号中进行模式识别。由于这类信号的信噪比较低,有必要使用谱图作为预测器和LVQ神经网络链。在不同的神经网络参数配置和不同的志愿者身上,对这种模式识别结构的有效性进行了测试。观察到神经网络的维数与其性能之间存在直接关系。迄今为止的结果鼓励了新的实验,并证明了所提出的系统用于复杂信号的实时模式识别的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信