{"title":"Tracking simplified shapes using a stochastic boundary","authors":"Antonio Zea, F. Faion, M. Baum, U. Hanebeck","doi":"10.1109/SAM.2014.6882380","DOIUrl":null,"url":null,"abstract":"When tracking extended objects, it is often the case that the shape of the target cannot be fully observed due to issues of visibility, artifacts, or high noise, which can change with time. In these situations, it is a common approach to model targets as simpler shapes instead, such as ellipsoids or cylinders. However, these simplifications cause information loss from the original shape, which could be used to improve the estimation results. In this paper, we propose a way to recover information from these lost details in the form of a stochastic boundary, whose parameters can be dynamically estimated from received measurements. The benefits of this approach are evaluated by tracking an object using noisy, real-life RGBD data.","PeriodicalId":141678,"journal":{"name":"2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2014.6882380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
When tracking extended objects, it is often the case that the shape of the target cannot be fully observed due to issues of visibility, artifacts, or high noise, which can change with time. In these situations, it is a common approach to model targets as simpler shapes instead, such as ellipsoids or cylinders. However, these simplifications cause information loss from the original shape, which could be used to improve the estimation results. In this paper, we propose a way to recover information from these lost details in the form of a stochastic boundary, whose parameters can be dynamically estimated from received measurements. The benefits of this approach are evaluated by tracking an object using noisy, real-life RGBD data.