Carlos Santos Burguete, Álvaro Subías Díaz-Blanco, Alejandro Roa Alonso
{"title":"Reciclando la clasificación sinóptica de Font: reconstrucción con ERA40 y agrupamiento PCA","authors":"Carlos Santos Burguete, Álvaro Subías Díaz-Blanco, Alejandro Roa Alonso","doi":"10.31978/639-19-010-0.151","DOIUrl":null,"url":null,"abstract":"RESUMEN Las clasificaciones sinópticas ayudan a entender la variabilidad y complejidad de los llamados patrones meteorológicos, o situaciones, a escala sinóptica. Hay una gradación de clasificaciones, desde las subjetivas, con caracterizaciones conceptuales y diagnósticas, hasta las clasificaciones objetivas, basadas en soporte numérico y con un amplio abanico de familias de algoritmos asociados, pasando por clasificaciones intermedias que tienen carácter mixto. En este estudio se revisan la clasificación objetiva de RIBALAYGUA y BORÉN (1995) y la clasificación subjetiva de FONT (2000). Esta última propone 23 patrones sinópticos, ilustrados con situaciones de 23 fechas concretas, en general de la década de 1970-1980. Se recuperan los reanálisis ERA40 ( UPPALA et al., 2005) del European Centre for Medium-range Weather Forecasts (ECMWF) correspondientes a esas 23 fechas y se dibujan los campos básicos con las herramientas actuales y estilo de visualización de predicción operativa. Se compara así el querer de la mano con el querer de la máquina . Se aplica, además, a estas 23 situaciones un algoritmo de agrupamiento «análisis de componentes principales» (PCA por sus siglas en inglés; JOLLIFFE, 1986) similar al vigente en AEMET para el sistema de predicción por conjuntos del ECMWF , con el propósito de aprender sobre la naturaleza de la variabilidad y diversidad de estos patrones. Se trata, pues, de reciclar un conocimiento muy conceptual y valioso, el de Font, conectándolo con el potencial de las herramientas numéricas actuales para, en definitiva, ver qué podemos aprender .","PeriodicalId":166428,"journal":{"name":"Sexto Simposio Nacional de Predicción \"Memorial Antonio Mestre\"","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sexto Simposio Nacional de Predicción \"Memorial Antonio Mestre\"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31978/639-19-010-0.151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
RESUMEN Las clasificaciones sinópticas ayudan a entender la variabilidad y complejidad de los llamados patrones meteorológicos, o situaciones, a escala sinóptica. Hay una gradación de clasificaciones, desde las subjetivas, con caracterizaciones conceptuales y diagnósticas, hasta las clasificaciones objetivas, basadas en soporte numérico y con un amplio abanico de familias de algoritmos asociados, pasando por clasificaciones intermedias que tienen carácter mixto. En este estudio se revisan la clasificación objetiva de RIBALAYGUA y BORÉN (1995) y la clasificación subjetiva de FONT (2000). Esta última propone 23 patrones sinópticos, ilustrados con situaciones de 23 fechas concretas, en general de la década de 1970-1980. Se recuperan los reanálisis ERA40 ( UPPALA et al., 2005) del European Centre for Medium-range Weather Forecasts (ECMWF) correspondientes a esas 23 fechas y se dibujan los campos básicos con las herramientas actuales y estilo de visualización de predicción operativa. Se compara así el querer de la mano con el querer de la máquina . Se aplica, además, a estas 23 situaciones un algoritmo de agrupamiento «análisis de componentes principales» (PCA por sus siglas en inglés; JOLLIFFE, 1986) similar al vigente en AEMET para el sistema de predicción por conjuntos del ECMWF , con el propósito de aprender sobre la naturaleza de la variabilidad y diversidad de estos patrones. Se trata, pues, de reciclar un conocimiento muy conceptual y valioso, el de Font, conectándolo con el potencial de las herramientas numéricas actuales para, en definitiva, ver qué podemos aprender .