A Combined Representation to Refine the Knowledge Using a Neuro-Symbolic Hybrid System applied in a Problem of Apple Classification

V. Sánchez, G. R. Salgado, O. Vergara-Villegas, Raúl Pinto Elías
{"title":"A Combined Representation to Refine the Knowledge Using a Neuro-Symbolic Hybrid System applied in a Problem of Apple Classification","authors":"V. Sánchez, G. R. Salgado, O. Vergara-Villegas, Raúl Pinto Elías","doi":"10.1109/CONIELECOMP.2006.5","DOIUrl":null,"url":null,"abstract":"In this paper we present the model of a Neuro- Symbolic Hybrid System (NSHS) that allows us to refine the knowledge associated to specific problem, for example, in problem of objects classification, where most of the systems of artificial vision use a numeric approach to solve the problem. In order to do this refinement we use one criterion of the NSHS known as, knowledge representation type. The knowledge representation type used in this paper is called combined representation, which is a combination among a local representation and a distributed representation. The proposed NSHS model allows the integration of the numeric and symbolic knowledge in order to obtain refinement knowledge. In this work, numeric knowledge comes from a vision system and symbolic knowledge comes from a human expert in apple classification. We give a brief description of each phase of the proposed model and analysis of the results obtained for every approach (symbolic, connectionist and hybrid) are made. The obtained results demonstrated that, if a lack of knowledge exists, the NSHS model can be used to refine the knowledge.","PeriodicalId":371526,"journal":{"name":"16th International Conference on Electronics, Communications and Computers (CONIELECOMP'06)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"16th International Conference on Electronics, Communications and Computers (CONIELECOMP'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONIELECOMP.2006.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper we present the model of a Neuro- Symbolic Hybrid System (NSHS) that allows us to refine the knowledge associated to specific problem, for example, in problem of objects classification, where most of the systems of artificial vision use a numeric approach to solve the problem. In order to do this refinement we use one criterion of the NSHS known as, knowledge representation type. The knowledge representation type used in this paper is called combined representation, which is a combination among a local representation and a distributed representation. The proposed NSHS model allows the integration of the numeric and symbolic knowledge in order to obtain refinement knowledge. In this work, numeric knowledge comes from a vision system and symbolic knowledge comes from a human expert in apple classification. We give a brief description of each phase of the proposed model and analysis of the results obtained for every approach (symbolic, connectionist and hybrid) are made. The obtained results demonstrated that, if a lack of knowledge exists, the NSHS model can be used to refine the knowledge.
基于神经符号混合系统的知识精炼组合表示在苹果分类问题中的应用
在本文中,我们提出了一个神经-符号混合系统(NSHS)的模型,该模型允许我们细化与特定问题相关的知识,例如,在物体分类问题中,大多数人工视觉系统使用数值方法来解决问题。为了进行这种细化,我们使用了NSHS的一个标准,即知识表示类型。本文使用的知识表示类型称为组合表示,它是局部表示和分布式表示的结合。提出的NSHS模型允许将数字知识和符号知识相结合,以获得精化知识。在这项工作中,数字知识来自视觉系统,符号知识来自人类苹果分类专家。我们对所提出的模型的每个阶段进行了简要描述,并对每种方法(符号方法、连接方法和混合方法)获得的结果进行了分析。得到的结果表明,如果存在知识缺失,可以使用NSHS模型来完善知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信