Convolutional Transformer-Based Deblurring Model for X-Ray Images

Hyunyong Lee, Nac-Woo Kim, Jungi Lee, S. Ko
{"title":"Convolutional Transformer-Based Deblurring Model for X-Ray Images","authors":"Hyunyong Lee, Nac-Woo Kim, Jungi Lee, S. Ko","doi":"10.1109/ITC-CSCC58803.2023.10212709","DOIUrl":null,"url":null,"abstract":"Image deblurring is an important pre-processing for improving relevant computer vision tasks. In this paper, we are interested in conducting deblurring X-ray images. Using a convolutional transformer as the main building block, we build an AutoEncoder-style deblurring model for X-ray images. From the experiments using the public X-ray image dataset, we show that our model conducts the deblurring operation well. For example, in terms of structural similarity (SSIM) as a performance metric, our model improves SSIM by up to 27% compared to the blurry images.","PeriodicalId":220939,"journal":{"name":"2023 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITC-CSCC58803.2023.10212709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Image deblurring is an important pre-processing for improving relevant computer vision tasks. In this paper, we are interested in conducting deblurring X-ray images. Using a convolutional transformer as the main building block, we build an AutoEncoder-style deblurring model for X-ray images. From the experiments using the public X-ray image dataset, we show that our model conducts the deblurring operation well. For example, in terms of structural similarity (SSIM) as a performance metric, our model improves SSIM by up to 27% compared to the blurry images.
基于卷积变换的x射线图像去模糊模型
图像去模糊是改进计算机视觉相关任务的重要预处理。在本文中,我们感兴趣的是进行去模糊的x射线图像。使用卷积变压器作为主要构建块,我们为x射线图像构建了一个autoencoder风格的去模糊模型。通过使用公开的x射线图像数据集的实验,我们证明了我们的模型可以很好地进行去模糊操作。例如,就结构相似性(SSIM)作为性能指标而言,与模糊图像相比,我们的模型将SSIM提高了27%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信