A Coupling Prediction Algorithm for Gas Turbine Remaining Useful Life Based on Health Degree

Yun-peng Cao, Pan Hu, Kehui Zeng, Shuying Li, B. He, Weixing Feng
{"title":"A Coupling Prediction Algorithm for Gas Turbine Remaining Useful Life Based on Health Degree","authors":"Yun-peng Cao, Pan Hu, Kehui Zeng, Shuying Li, B. He, Weixing Feng","doi":"10.1109/SDPC.2019.00094","DOIUrl":null,"url":null,"abstract":"A prediction algorithm for the remaining useful life (RUL) of gas turbine based on the health degree (HD) is proposed in the paper. According to the historical data of the monitoring parameters, the degradation trend of the gas turbine and parameters can be obtained to achieve the purpose of predicting the remaining useful life, and provide the basis for subsequent fault diagnosis and maintenance work. Firstly, the fuzzy analytic hierarchy process (FAHP) is used to construct the calculation model of gas turbine HD. Secondly, the acceleration change point analysis method is combined with the kernel density estimation method to determine the gas turbine fault threshold. On this basis, this paper proposes a new prediction algorithm-- the splicing prediction algorithm based on HD and establishes the RUL prediction model of the gas turbine. Finally, the test data set in C-MAPSS is used for case analysis, and the predicted RUL is compared with the real value to obtain the prediction accuracy. The results show that the proposed prediction algorithm can predict the RUL of some data that meets the degradation detection, and the prediction accuracy is 86.67%, which proves the validity and feasibility of the proposed method.","PeriodicalId":403595,"journal":{"name":"2019 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SDPC.2019.00094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A prediction algorithm for the remaining useful life (RUL) of gas turbine based on the health degree (HD) is proposed in the paper. According to the historical data of the monitoring parameters, the degradation trend of the gas turbine and parameters can be obtained to achieve the purpose of predicting the remaining useful life, and provide the basis for subsequent fault diagnosis and maintenance work. Firstly, the fuzzy analytic hierarchy process (FAHP) is used to construct the calculation model of gas turbine HD. Secondly, the acceleration change point analysis method is combined with the kernel density estimation method to determine the gas turbine fault threshold. On this basis, this paper proposes a new prediction algorithm-- the splicing prediction algorithm based on HD and establishes the RUL prediction model of the gas turbine. Finally, the test data set in C-MAPSS is used for case analysis, and the predicted RUL is compared with the real value to obtain the prediction accuracy. The results show that the proposed prediction algorithm can predict the RUL of some data that meets the degradation detection, and the prediction accuracy is 86.67%, which proves the validity and feasibility of the proposed method.
基于健康度的燃气轮机剩余使用寿命耦合预测算法
提出了一种基于健康度的燃气轮机剩余使用寿命预测算法。根据监测参数的历史数据,可以得到燃气轮机和参数的退化趋势,达到预测剩余使用寿命的目的,为后续的故障诊断和维护工作提供依据。首先,利用模糊层次分析法(FAHP)建立了燃气轮机HD的计算模型。其次,将加速度变化点分析法与核密度估计法相结合,确定燃气轮机故障阈值;在此基础上,提出了一种新的预测算法——基于HD的拼接预测算法,并建立了燃气轮机RUL预测模型。最后,利用C-MAPSS中的测试数据集进行案例分析,并将预测的RUL与实际值进行比较,获得预测精度。结果表明,所提出的预测算法能够预测部分满足退化检测的数据的RUL,预测准确率为86.67%,证明了所提出方法的有效性和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信