Computation of Parameters Using Genetic Algorithm and Sequential Quadratic Programming in Sampling

N. Koyuncu
{"title":"Computation of Parameters Using Genetic Algorithm and Sequential Quadratic Programming in Sampling","authors":"N. Koyuncu","doi":"10.7763/IJCTE.2015.V7.992","DOIUrl":null,"url":null,"abstract":"The sampling literature contains many examples of estimators of population parameter. To deal with this problem many authors have suggested family of estimators of population parameter. But in the case of generalization of these estimators, estimation of optimum values is a problem. Some authors can define estimator replacing the unknown parameters by their sample estimates. To get the optimum estimator, one need to solve complex mean square error equation with many parameters and nonlinear constraints. In this study we have tried to get these optimum parameter in stratified random sampling using genetic algorithms and sequential quadratic programming. A numerical example is also done to compare these algorithms. The results show that genetic algorithm is more efficient than sequential quadratic programming to solve the complex model with more parameters under non-linear constraints.","PeriodicalId":306280,"journal":{"name":"International Journal of Computer Theory and Engineering","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Theory and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7763/IJCTE.2015.V7.992","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The sampling literature contains many examples of estimators of population parameter. To deal with this problem many authors have suggested family of estimators of population parameter. But in the case of generalization of these estimators, estimation of optimum values is a problem. Some authors can define estimator replacing the unknown parameters by their sample estimates. To get the optimum estimator, one need to solve complex mean square error equation with many parameters and nonlinear constraints. In this study we have tried to get these optimum parameter in stratified random sampling using genetic algorithms and sequential quadratic programming. A numerical example is also done to compare these algorithms. The results show that genetic algorithm is more efficient than sequential quadratic programming to solve the complex model with more parameters under non-linear constraints.
遗传算法与序列二次规划在抽样中的参数计算
抽样文献中有许多总体参数估计的例子。为了解决这一问题,许多作者提出了总体参数估计族。但在这些估计的泛化情况下,最优值的估计是一个问题。一些作者可以定义估计量,用他们的样本估计代替未知参数。为了得到最优估计量,需要求解具有多参数和非线性约束的复杂均方误差方程。在本研究中,我们尝试使用遗传算法和顺序二次规划在分层随机抽样中得到这些最优参数。最后通过数值算例对这些算法进行了比较。结果表明,遗传算法在求解非线性约束下参数较多的复杂模型时比序列二次规划算法更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信