Current path optimized structure for high drain current density and high gate-turn-on voltage enhancement mode heterostructure field effect transistors
N. Hara, Y. Nakasha, M. Nagahara, K. Joshin, Y. Watanabe, M. Takikawa
{"title":"Current path optimized structure for high drain current density and high gate-turn-on voltage enhancement mode heterostructure field effect transistors","authors":"N. Hara, Y. Nakasha, M. Nagahara, K. Joshin, Y. Watanabe, M. Takikawa","doi":"10.1109/GAAS.1998.722670","DOIUrl":null,"url":null,"abstract":"We developed a new type of enhancement-mode (E-mode) heterostructure field effect transistors (FETs) which provide single-voltage operation of power amplifiers in portable phone handsets. Gate leakage current paths were optimized, and a high gate-turn-on voltage and a high drain current density were obtained at the same time. This allows a 50% increase of the drain current by shortening the gate-to-source length without increasing the gate leakage current. We applied this technique to completely E-mode FETs (Vth>0.3 V). A power added efficiency as high as 70.6% has been achieved for an output power of 33 dBm under a Vds of 3.5 V at 850 MHz.","PeriodicalId":288170,"journal":{"name":"GaAs IC Symposium. IEEE Gallium Arsenide Integrated Circuit Symposium. 20th Annual. Technical Digest 1998 (Cat. No.98CH36260)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GaAs IC Symposium. IEEE Gallium Arsenide Integrated Circuit Symposium. 20th Annual. Technical Digest 1998 (Cat. No.98CH36260)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GAAS.1998.722670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
We developed a new type of enhancement-mode (E-mode) heterostructure field effect transistors (FETs) which provide single-voltage operation of power amplifiers in portable phone handsets. Gate leakage current paths were optimized, and a high gate-turn-on voltage and a high drain current density were obtained at the same time. This allows a 50% increase of the drain current by shortening the gate-to-source length without increasing the gate leakage current. We applied this technique to completely E-mode FETs (Vth>0.3 V). A power added efficiency as high as 70.6% has been achieved for an output power of 33 dBm under a Vds of 3.5 V at 850 MHz.